These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 26295451)
21. Strength of cement-metal interfaces in fatigue: comparison of smooth, porous and precoated specimens. Davies JP; Harris WH Clin Mater; 1993; 12(2):121-6. PubMed ID: 10148341 [TBL] [Abstract][Full Text] [Related]
22. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement. Jeffers JR; Browne M; Taylor M Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209 [TBL] [Abstract][Full Text] [Related]
23. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers. Kane RJ; Yue W; Mason JJ; Roeder RK J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of a highly-radiopaque iodine-containing acrylic bone cement for use in augmentation of vertebral compression fractures. Boelen EJ; Lewis G; Xu J; Slots T; Koole LH; van Hooy-Corstjens CS J Biomed Mater Res A; 2008 Jul; 86(1):76-88. PubMed ID: 17941018 [TBL] [Abstract][Full Text] [Related]
25. The effect of a thin coating of polymethylmethacrylate on the torsional fatigue strength of the cement-metal interface. Davies JP; Singer G; Harris WH J Appl Biomater; 1992; 3(1):45-9. PubMed ID: 10147704 [TBL] [Abstract][Full Text] [Related]
26. Effect of vacuum-treatment on deformation properties of PMMA bone cement. Zivic F; Babic M; Grujovic N; Mitrovic S; Favaro G; Caunii M J Mech Behav Biomed Mater; 2012 Jan; 5(1):129-38. PubMed ID: 22100087 [TBL] [Abstract][Full Text] [Related]
27. Characterisation of a metallic foam-cement composite under selected loading conditions. Tozzi G; Zhang QH; Lupton C; Tong J; Guillen T; Ohrndorf A; Christ HJ J Mater Sci Mater Med; 2013 Nov; 24(11):2509-18. PubMed ID: 23846838 [TBL] [Abstract][Full Text] [Related]
28. Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading. Dworak M; Błażewicz S Acta Bioeng Biomech; 2016; 18(2):71-9. PubMed ID: 27405412 [TBL] [Abstract][Full Text] [Related]
29. Some failure modes of four clinical bone cements. Liu C; Green SM; Watkins ND; Gregg PJ; McCaskie AW Proc Inst Mech Eng H; 2001; 215(4):359-66. PubMed ID: 11521759 [TBL] [Abstract][Full Text] [Related]
30. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Wilke HJ; Mehnert U; Claes LE; Bierschneider MM; Jaksche H; Boszczyk BM Spine (Phila Pa 1976); 2006 Dec; 31(25):2934-41. PubMed ID: 17139224 [TBL] [Abstract][Full Text] [Related]
31. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation. Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810 [TBL] [Abstract][Full Text] [Related]
32. In vivo evaluation of bioactive PMMA-based bone cement with unchanged mechanical properties in a load-bearing model on rabbits. Fottner A; Nies B; Kitanovic D; Steinbrück A; Hausdorf J; Mayer-Wagner S; Pohl U; Jansson V J Biomater Appl; 2015 Jul; 30(1):30-7. PubMed ID: 25627649 [TBL] [Abstract][Full Text] [Related]
33. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement. Schmitt S; Krzypow DJ; Rimnac CM Biomed Tech (Berl); 2004 Mar; 49(3):61-5. PubMed ID: 15106900 [TBL] [Abstract][Full Text] [Related]
34. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement. Evans SL J Mater Sci Mater Med; 2007 Sep; 18(9):1711-7. PubMed ID: 17483908 [TBL] [Abstract][Full Text] [Related]
35. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law. Race A; Mann KA J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):278-82. PubMed ID: 18161813 [TBL] [Abstract][Full Text] [Related]
36. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement. Topoleski LD; Ducheyne P; Cuckler JM J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581 [TBL] [Abstract][Full Text] [Related]
37. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
38. The effect of application time of two types of bone cement on the cement-bone interface strength. Dahabreh Z; Phillips HK; Stewart T; Stone M Eur J Orthop Surg Traumatol; 2015 May; 25(4):775-81. PubMed ID: 25192848 [TBL] [Abstract][Full Text] [Related]
39. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan]. Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134 [TBL] [Abstract][Full Text] [Related]