These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26295617)

  • 21. Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties.
    Smith KW; Zhao H; Zhang H; Sánchez-Iglesias A; Grzelczak M; Wang Y; Chang WS; Nordlander P; Liz-Marzán LM; Link S
    ACS Nano; 2016 Jun; 10(6):6180-8. PubMed ID: 27172606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas.
    Abb M; Wang Y; Albella P; de Groot CH; Aizpurua J; Muskens OL
    ACS Nano; 2012 Jul; 6(7):6462-70. PubMed ID: 22708624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circular dichroism from single plasmonic nanostructures with extrinsic chirality.
    Lu X; Wu J; Zhu Q; Zhao J; Wang Q; Zhan L; Ni W
    Nanoscale; 2014 Nov; 6(23):14244-53. PubMed ID: 25307740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas.
    Munkhbat B; Wersäll M; Baranov DG; Antosiewicz TJ; Shegai T
    Sci Adv; 2018 Jul; 4(7):eaas9552. PubMed ID: 29984306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulation of collective optical activity in one-dimensional plasmonic assembly.
    Zhu Z; Liu W; Li Z; Han B; Zhou Y; Gao Y; Tang Z
    ACS Nano; 2012 Mar; 6(3):2326-32. PubMed ID: 22324310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers.
    Slaughter LS; Wu Y; Willingham BA; Nordlander P; Link S
    ACS Nano; 2010 Aug; 4(8):4657-66. PubMed ID: 20614909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin and Orbital Rotation of Plasmonic Dimer Driven by Circularly Polarized Light.
    Liaw JW; Huang MC; Chao HY; Kuo MK
    Nanoscale Res Lett; 2018 Oct; 13(1):322. PubMed ID: 30315377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality.
    Lan X; Chen Z; Dai G; Lu X; Ni W; Wang Q
    J Am Chem Soc; 2013 Aug; 135(31):11441-4. PubMed ID: 23879265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model.
    Yin X; Schäferling M; Metzger B; Giessen H
    Nano Lett; 2013; 13(12):6238-43. PubMed ID: 24219560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optically Tunable Chiral Plasmonic Guest-Host Cellulose Films Weaved with Long-range Ordered Silver Nanowires.
    Chu G; Wang X; Chen T; Gao J; Gai F; Wang Y; Xu Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11863-70. PubMed ID: 25839237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic circular dichroism of 310- and α-helix using a discrete interaction model/quantum mechanics method.
    Chulhai DV; Jensen L
    J Phys Chem A; 2015 May; 119(21):5218-23. PubMed ID: 25474537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Demonstration of scattering suppression in retardation-based plasmonic nanoantennas.
    Nielsen MG; Pors A; Nielsen RB; Boltasseva A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2010 Jul; 18(14):14802-11. PubMed ID: 20639967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas.
    Abass A; Gutsche P; Maes B; Rockstuhl C; Martins ER
    Opt Express; 2016 Aug; 24(17):19638-50. PubMed ID: 27557242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
    Kim DS; Heo J; Ahn SH; Han SW; Yun WS; Kim ZH
    Nano Lett; 2009 Oct; 9(10):3619-25. PubMed ID: 19624147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation.
    Hooshmand N; O'Neil D; Asiri AM; El-Sayed M
    J Phys Chem A; 2014 Sep; 118(37):8338-44. PubMed ID: 24932838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles.
    Biswas S; Liu X; Jarrett JW; Brown D; Pustovit V; Urbas A; Knappenberger KL; Nealey PF; Vaia RA
    Nano Lett; 2015 Mar; 15(3):1836-42. PubMed ID: 25646978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency-dependent optical steering from subwavelength plasmonic structures.
    Djalalian-Assl A; Gómez DE; Roberts A; Davis TJ
    Opt Lett; 2012 Oct; 37(20):4206-8. PubMed ID: 23073412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.