These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26295618)

  • 1. Finding Minimum Structures on the Seam of Crossing in Reactions of Type A + B → X: Exploration of Nonadiabatic Ignition Pathways of Unsaturated Hydrocarbons.
    Maeda S; Saito R; Morokuma K
    J Phys Chem Lett; 2011 Apr; 2(8):852-7. PubMed ID: 26295618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring potential crossing seams in periodic systems: Intersystem crossing pathways in the benzene crystal.
    Saita K; Takagi M; Harabuchi Y; Okada H; Maeda S
    J Chem Phys; 2018 Aug; 149(7):072329. PubMed ID: 30134685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the photodissociation of methylamine involving S1, T1, and S0 states.
    Xiao H; Maeda S; Morokuma K
    J Phys Chem A; 2013 Jul; 117(28):5757-64. PubMed ID: 23789818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2011 Aug; 7(8):2335-45. PubMed ID: 26606607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods.
    Grambow CA; Jamal A; Li YP; Green WH; Zádor J; Suleimanov YV
    J Am Chem Soc; 2018 Jan; 140(3):1035-1048. PubMed ID: 29271202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional Effects in Nonadiabatic Statistical Theories of Spin-Forbidden Kinetics: A Case Study of (3)O + CO → CO2.
    Jasper AW
    J Phys Chem A; 2015 Jul; 119(28):7339-51. PubMed ID: 25871914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods.
    Maeda S; Ohno K; Morokuma K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3683-701. PubMed ID: 23389653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Study of the Extent of Intersystem Crossing in the O(
    Cavallotti C; De Falco C; Pratali Maffei L; Caracciolo A; Vanuzzo G; Balucani N; Casavecchia P
    J Phys Chem Lett; 2020 Nov; 11(22):9621-9628. PubMed ID: 33125250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A direct method for locating minimum-energy crossing points (MECPs) in spin-forbidden transitions and nonadiabatic reactions.
    Chachiyo T; Rodriguez JH
    J Chem Phys; 2005 Sep; 123(9):94711. PubMed ID: 16164366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and performance of the artificial force induced reaction method in the GRRM17 program.
    Maeda S; Harabuchi Y; Takagi M; Saita K; Suzuki K; Ichino T; Sumiya Y; Sugiyama K; Ono Y
    J Comput Chem; 2018 Feb; 39(4):233-251. PubMed ID: 29135034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic exploration of minimum energy conical intersection structures near the Franck-Condon region.
    Maeda S; Harabuchi Y; Taketsugu T; Morokuma K
    J Phys Chem A; 2014 Dec; 118(51):12050-8. PubMed ID: 25259835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical reactions of the low-lying excited states of formaldehyde: T1/S0 intersystem crossings, characteristics of the S1 and T1 potential energy surfaces, and a global T1 potential energy surface.
    Zhang P; Maeda S; Morokuma K; Braams BJ
    J Chem Phys; 2009 Mar; 130(11):114304. PubMed ID: 19317536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of the mechanism and kinetics of F+N3 reactions.
    Ma H; Liu X; Bian W; Meng L; Zheng S
    Chemphyschem; 2006 Aug; 7(8):1786-94. PubMed ID: 16888750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic transition state theory and trajectory surface hopping dynamics: intersystem crossing between (3)B1 and (1)A1 states of SiH2.
    Zaari RR; Varganov SA
    J Phys Chem A; 2015 Feb; 119(8):1332-8. PubMed ID: 25635385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the van der Lugt/Oosterhoff model: when the conical intersection seam and the S1 minimum energy path do not cross.
    Nenov A; Kölle P; Robb MA; de Vivie-Riedle R
    J Org Chem; 2010 Jan; 75(1):123-9. PubMed ID: 19954144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Potential Energy Surfaces of Large Systems with Artificial Force Induced Reaction Method in Combination with ONIOM and Microiteration.
    Maeda S; Abe E; Hatanaka M; Taketsugu T; Morokuma K
    J Chem Theory Comput; 2012 Dec; 8(12):5058-63. PubMed ID: 26593196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.