These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26295627)

  • 1. Phthalocyanine-Carbon Nanostructure Materials Assembled through Supramolecular Interactions.
    Bottari G; Suanzes JA; Trukhina O; Torres T
    J Phys Chem Lett; 2011 Apr; 2(8):905-13. PubMed ID: 26295627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phthalocyanine-nanocarbon ensembles: from discrete molecular and supramolecular systems to hybrid nanomaterials.
    Bottari G; de la Torre G; Torres T
    Acc Chem Res; 2015 Apr; 48(4):900-10. PubMed ID: 25837299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications.
    D'Souza F; Ito O
    Chem Commun (Camb); 2009 Sep; (33):4913-28. PubMed ID: 19668806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-wall carbon nanotubes bearing covalently linked phthalocyanines--photoinduced electron transfer.
    Ballesteros B; Torre Gde L; Ehli C; Rahman GM; Agulló-Rueda F; Guldi DM; Torres T
    J Am Chem Soc; 2007 Apr; 129(16):5061-8. PubMed ID: 17397152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic self-assembly for functional hierarchical nanostructured materials.
    Faul CF
    Acc Chem Res; 2014 Dec; 47(12):3428-38. PubMed ID: 25191750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregate nanostructures of organic molecular materials.
    Liu H; Xu J; Li Y; Li Y
    Acc Chem Res; 2010 Dec; 43(12):1496-508. PubMed ID: 20942417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.
    Ito O
    Chem Rec; 2017 Mar; 17(3):326-362. PubMed ID: 27701806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.
    Wang A; Ye J; Humphrey MG; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705704. PubMed ID: 29450914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. π-π interactions in carbon nanostructures.
    Pérez EM; Martín N
    Chem Soc Rev; 2015 Sep; 44(18):6425-33. PubMed ID: 26272196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity.
    Malig J; Jux N; Guldi DM
    Acc Chem Res; 2013 Jan; 46(1):53-64. PubMed ID: 22916796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo- and electro-functional self-assembled architectures of porphyrins.
    Hasobe T
    Phys Chem Chem Phys; 2012 Dec; 14(46):15975-87. PubMed ID: 23093225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 'two-point' bound zinc porphyrin-zinc phthalocyanine-fullerene supramolecular triad for sequential energy and electron transfer.
    KC CB; Ohkubo K; Karr PA; Fukuzumi S; D'Souza F
    Chem Commun (Camb); 2013 Sep; 49(69):7614-6. PubMed ID: 23882466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular [60]fullerene chemistry on surfaces.
    Bonifazi D; Enger O; Diederich F
    Chem Soc Rev; 2007 Feb; 36(2):390-414. PubMed ID: 17264939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular nanoarchitectures for light energy conversion.
    Hasobe T
    Phys Chem Chem Phys; 2010 Jan; 12(1):44-57. PubMed ID: 20024442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.
    Bairi P; Minami K; Hill JP; Nakanishi W; Shrestha LK; Liu C; Harano K; Nakamura E; Ariga K
    ACS Nano; 2016 Sep; 10(9):8796-802. PubMed ID: 27541964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy.
    Huang Z; Song W; Chen X
    Front Chem; 2020; 8():380. PubMed ID: 32528926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in self-assembled cofacial zinc phthalocyanine dimer-fullerene conjugate.
    D'Souza F; Maligaspe E; Ohkubo K; Zandler ME; Subbaiyan NK; Fukuzumi S
    J Am Chem Soc; 2009 Jul; 131(25):8787-97. PubMed ID: 19505071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-selective self-assembly of functionalized carbon allotropes from solution.
    Wang Z; Mohammadzadeh S; Schmaltz T; Kirschner J; Khassanov A; Eigler S; Mundloch U; Backes C; Steinrück HG; Magerl A; Hauke F; Hirsch A; Halik M
    ACS Nano; 2013 Dec; 7(12):11427-34. PubMed ID: 24274682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.