These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 26295704)
1. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer. Feng D; Chen Z; Wang Z; Zhang C; He K; Guo S PLoS One; 2015; 10(8):e0136430. PubMed ID: 26295704 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor. Leetachewa S; Khomkhum N; Sakdee S; Wang P; Moonsom S Parasit Vectors; 2018 Sep; 11(1):515. PubMed ID: 30236155 [TBL] [Abstract][Full Text] [Related]
3. Purification of an active fragment of Cry1Ie toxin from Bacillus thuringiensis. Guo S; Zhang C; Lin X; Zhang Y; He K; Song F; Zhang J Protein Expr Purif; 2011 Aug; 78(2):204-8. PubMed ID: 21421052 [TBL] [Abstract][Full Text] [Related]
4. A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab. Xu L; Ferry N; Wang Z; Zhang J; Edwards MG; Gatehouse AM; He K Transgenic Res; 2013 Dec; 22(6):1155-66. PubMed ID: 23748999 [TBL] [Abstract][Full Text] [Related]
5. Insecticidal Specificity of Cry1Ah to Helicoverpa armigera Is Determined by Binding of APN1 via Domain II Loops 2 and 3. Zhou Z; Liu Y; Liang G; Huang Y; Bravo A; Soberón M; Song F; Zhou X; Zhang J Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940541 [TBL] [Abstract][Full Text] [Related]
6. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Soberón M; Portugal L; Garcia-Gómez BI; Sánchez J; Onofre J; Gómez I; Pacheco S; Bravo A Insect Biochem Mol Biol; 2018 Feb; 93():66-78. PubMed ID: 29269111 [TBL] [Abstract][Full Text] [Related]
7. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Cry1Ah Toxin-Binding Reliability to Midgut Membrane Proteins of the Asian Corn Borer. Prabu S; Shabbir MZ; Wang Z; He K Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32599715 [TBL] [Abstract][Full Text] [Related]
9. Identification of a New cry1I-Type Gene as a Candidate for Gene Pyramiding in Corn To Control Ostrinia Species Larvae. Zhao C; Jurat-Fuentes JL; Abdelgaffar HM; Pan H; Song F; Zhang J Appl Environ Microbiol; 2015 Jun; 81(11):3699-705. PubMed ID: 25795679 [TBL] [Abstract][Full Text] [Related]
10. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Portugal L; Gringorten JL; Caputo GF; Soberón M; Muñoz-Garay C; Bravo A Peptides; 2014 Mar; 53():292-9. PubMed ID: 24189038 [TBL] [Abstract][Full Text] [Related]
11. Proteolysis, histopathological effects, and immunohistopathological localization of delta-endotoxins of Bacillus thuringiensis subsp. kurstaki in the midgut of lepidopteran olive tree pathogenic insect Prays oleae. Rouis S; Chakroun M; Saadaoui I; Jaoua S Mol Biotechnol; 2007 Feb; 35(2):141-8. PubMed ID: 17435280 [TBL] [Abstract][Full Text] [Related]
12. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
13. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
14. Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. Sakai H; Howlader MT; Ishida Y; Nakaguchi A; Oka K; Ohbayashi K; Yamagiwa M; Hayakawa T J Biosci Bioeng; 2007 Apr; 103(4):381-3. PubMed ID: 17502282 [TBL] [Abstract][Full Text] [Related]
15. Functional significance of membrane associated proteolysis in the toxicity of Bacillus thuringiensis Cry3Aa toxin against Colorado potato beetle. García-Robles I; Ochoa-Campuzano C; Sánchez J; Contreras E; Real MD; Rausell C Toxicon; 2012 Nov; 60(6):1063-71. PubMed ID: 22884605 [TBL] [Abstract][Full Text] [Related]
16. Peritrophic membrane contribution to Bt Cry delta-endotoxin susceptibility in Lepidoptera and the effect of Calcofluor. Rees JS; Jarrett P; Ellar DJ J Invertebr Pathol; 2009 Mar; 100(3):139-46. PubMed ID: 19320042 [TBL] [Abstract][Full Text] [Related]
17. Effects of disruption of the peritrophic membrane on larval susceptibility to Bt toxin Cry1Ac in cabbage loopers. Guo W; Kain W; Wang P J Insect Physiol; 2019; 117():103897. PubMed ID: 31199901 [TBL] [Abstract][Full Text] [Related]
18. Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Sharma P; Nain V; Lakhanpaul S; Kumar PA Lett Appl Microbiol; 2010 Jul; 51(1):42-7. PubMed ID: 20536706 [TBL] [Abstract][Full Text] [Related]
19. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. Hua G; Park Y; Adang MJ Insect Biochem Mol Biol; 2014 Feb; 45():11-7. PubMed ID: 24225445 [TBL] [Abstract][Full Text] [Related]
20. Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae). Güney G; Cedden D; Hänniger S; Hegedus DD; Heckel DG; Toprak U Insect Biochem Mol Biol; 2024 Mar; 166():104073. PubMed ID: 38215915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]