These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255 [TBL] [Abstract][Full Text] [Related]
3. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice. Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194 [TBL] [Abstract][Full Text] [Related]
4. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid. Vodicka P; Mo S; Tousley A; Green KM; Sapp E; Iuliano M; Sadri-Vakili G; Shaffer SA; Aronin N; DiFiglia M; Kegel-Gleason KB J Huntingtons Dis; 2015; 4(2):187-201. PubMed ID: 26397899 [TBL] [Abstract][Full Text] [Related]
6. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length. Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Fossale E; Seong IS; Coser KR; Shioda T; Kohane IS; Wheeler VC; Gusella JF; MacDonald ME; Lee JM Hum Mol Genet; 2011 Nov; 20(21):4258-67. PubMed ID: 21840924 [TBL] [Abstract][Full Text] [Related]
9. Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. Mende-Mueller LM; Toneff T; Hwang SR; Chesselet MF; Hook VY J Neurosci; 2001 Mar; 21(6):1830-7. PubMed ID: 11245667 [TBL] [Abstract][Full Text] [Related]
10. The impairment of cholesterol metabolism in Huntington disease. Leoni V; Caccia C Biochim Biophys Acta; 2015 Aug; 1851(8):1095-105. PubMed ID: 25596342 [TBL] [Abstract][Full Text] [Related]
11. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease. Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303 [TBL] [Abstract][Full Text] [Related]
12. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958 [TBL] [Abstract][Full Text] [Related]
13. Characterization of HTT inclusion size, location, and timing in the zQ175 mouse model of Huntington's disease: an in vivo high-content imaging study. Carty N; Berson N; Tillack K; Thiede C; Scholz D; Kottig K; Sedaghat Y; Gabrysiak C; Yohrling G; von der Kammer H; Ebneth A; Mack V; Munoz-Sanjuan I; Kwak S PLoS One; 2015; 10(4):e0123527. PubMed ID: 25859666 [TBL] [Abstract][Full Text] [Related]
14. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? Kennedy L; Shelbourne PF Hum Mol Genet; 2000 Oct; 9(17):2539-44. PubMed ID: 11030759 [TBL] [Abstract][Full Text] [Related]
15. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration. Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462 [TBL] [Abstract][Full Text] [Related]
16. Selective degeneration in YAC mouse models of Huntington disease. Van Raamsdonk JM; Warby SC; Hayden MR Brain Res Bull; 2007 Apr; 72(2-3):124-31. PubMed ID: 17352936 [TBL] [Abstract][Full Text] [Related]
17. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. Menalled LB; Sison JD; Wu Y; Olivieri M; Li XJ; Li H; Zeitlin S; Chesselet MF J Neurosci; 2002 Sep; 22(18):8266-76. PubMed ID: 12223581 [TBL] [Abstract][Full Text] [Related]
18. The selective vulnerability of nerve cells in Huntington's disease. Sieradzan KA; Mann DM Neuropathol Appl Neurobiol; 2001 Feb; 27(1):1-21. PubMed ID: 11298997 [TBL] [Abstract][Full Text] [Related]
19. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Oliveira JM J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078 [TBL] [Abstract][Full Text] [Related]
20. Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease. Valencia A; Reeves PB; Sapp E; Li X; Alexander J; Kegel KB; Chase K; Aronin N; DiFiglia M J Neurosci Res; 2010 Jan; 88(1):179-90. PubMed ID: 19642201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]