These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26295787)

  • 21. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes.
    Koh AL; Bao K; Khan I; Smith WE; Kothleitner G; Nordlander P; Maier SA; McComb DW
    ACS Nano; 2009 Oct; 3(10):3015-22. PubMed ID: 19772292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates.
    Wang X; Li M; Meng L; Lin K; Feng J; Huang T; Yang Z; Ren B
    ACS Nano; 2014 Jan; 8(1):528-36. PubMed ID: 24328390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
    Shegai T; Vaskevich A; Rubinstein I; Haran G
    J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons.
    Mohammadi Z; Van Vlack CP; Hughes S; Bornemann J; Gordon R
    Opt Express; 2012 Jul; 20(14):15024-34. PubMed ID: 22772198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges.
    Choi HK; Lee KS; Shin HH; Koo JJ; Yeon GJ; Kim ZH
    Acc Chem Res; 2019 Nov; 52(11):3008-3017. PubMed ID: 31609583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenomenological local field enhancement factor distributions around electromagnetic hot spots.
    Le Ru EC; Etchegoin PG
    J Chem Phys; 2009 May; 130(18):181101. PubMed ID: 19449901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman and near-field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles.
    Hossain MK; Shimada T; Kitajima M; Imura K; Okamoto H
    J Microsc; 2008 Feb; 229(Pt 2):327-30. PubMed ID: 18304093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon modes of a silver thin film taper probed with STEM-EELS.
    Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons.
    Ausman LK; Schatz GC
    J Chem Phys; 2008 Aug; 129(5):054704. PubMed ID: 18698918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of atomic resolved plasmon-loss image by spherical aberration-corrected STEM-EELS method.
    Yamazaki T; Kotaka Y; Tsukada M; Kataoka Y
    Ultramicroscopy; 2010 Aug; 110(9):1161-5. PubMed ID: 20451326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Graphene-Supported Aluminum Plasmonics.
    Elibol K; van Aken PA
    ACS Nano; 2022 Aug; 16(8):11931-11943. PubMed ID: 35904978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.
    Wu Y; Li G; Camden JP
    Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency-Domain Proof of the Existence of Atomic-Scale SERS Hot-Spots.
    Shin HH; Yeon GJ; Choi HK; Park SM; Lee KS; Kim ZH
    Nano Lett; 2018 Jan; 18(1):262-271. PubMed ID: 29206468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influences of particle number on hot spots in strongly coupled metal nanoparticles chain.
    Wang ZB; Luk'yanchuk BS; Guo W; Edwardson SP; Whitehead DJ; Li L; Liu Z; Watkins KG
    J Chem Phys; 2008 Mar; 128(9):094705. PubMed ID: 18331108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman Scattering.
    An D; Shen Y; Wen J; Zheng Z; Chen J; She J; Chen H; Deng S; Xu N
    Nanomicro Lett; 2017; 9(1):2. PubMed ID: 30460299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tomography of particle plasmon fields from electron energy loss spectroscopy.
    Hörl A; Trügler A; Hohenester U
    Phys Rev Lett; 2013 Aug; 111(7):076801. PubMed ID: 23992075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.