These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 26295914)
1. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. Chandran AS; Bynevelt M; Lind CR J Neurosurg; 2016 Jan; 124(1):96-105. PubMed ID: 26295914 [TBL] [Abstract][Full Text] [Related]
2. The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Kerl HU; Gerigk L; Pechlivanis I; Al-Zghloul M; Groden C; Nölte IS Acta Neurochir (Wien); 2012 Nov; 154(11):2051-62. PubMed ID: 22930282 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson's disease: from preclinical to clinical studies. Senova S; Hosomi K; Gurruchaga JM; Gouello G; Ouerchefani N; Beaugendre Y; Lepetit H; Lefaucheur JP; Badin RA; Dauguet J; Jan C; Hantraye P; Brugières P; Palfi S J Neurosurg; 2016 Aug; 125(2):472-80. PubMed ID: 26745490 [TBL] [Abstract][Full Text] [Related]
4. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping. Dimov AV; Gupta A; Kopell BH; Wang Y J Neurosurg; 2019 Aug; 131(2):360-367. PubMed ID: 30095333 [TBL] [Abstract][Full Text] [Related]
5. 1.5T versus 3T MRI for targeting subthalamic nucleus for deep brain stimulation. Cheng CH; Huang HM; Lin HL; Chiou SM Br J Neurosurg; 2014 Aug; 28(4):467-70. PubMed ID: 24191703 [TBL] [Abstract][Full Text] [Related]
6. The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: clinical article. Kerl HU; Gerigk L; Pechlivanis I; Al-Zghloul M; Groden C; Nölte I J Neurosurg; 2012 Dec; 117(6):1155-65. PubMed ID: 23039154 [TBL] [Abstract][Full Text] [Related]
7. Susceptibility-enhanced 3-Tesla T1-weighted spoiled gradient echo of the midbrain nuclei for guidance of deep brain stimulation implantation. Young GS; Feng F; Shen H; Chen NK Neurosurgery; 2009 Oct; 65(4):809-15. PubMed ID: 19834387 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease. Heo YJ; Kim SJ; Kim HS; Choi CG; Jung SC; Lee JK; Lee CS; Chung SJ; Cho SH; Lee GR Neuroradiology; 2015 Sep; 57(9):929-35. PubMed ID: 26156865 [TBL] [Abstract][Full Text] [Related]
9. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. Güngör A; Baydın ŞS; Holanda VM; Middlebrooks EH; Isler C; Tugcu B; Foote K; Tanriover N J Neurosurg; 2019 Mar; 130(3):716-732. PubMed ID: 29726781 [TBL] [Abstract][Full Text] [Related]
10. The Role of 3T Magnetic Resonance Imaging for Targeting the Human Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease. Longhi M; Ricciardi G; Tommasi G; Nicolato A; Foroni R; Bertolasi L; Beltramello A; Moretto G; Tinazzi M; Gerosa M J Neurol Surg A Cent Eur Neurosurg; 2015 May; 76(3):181-9. PubMed ID: 25764475 [TBL] [Abstract][Full Text] [Related]
11. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. Cui Z; Pan L; Song H; Xu X; Xu B; Yu X; Ling Z J Neurosurg; 2016 Jan; 124(1):62-9. PubMed ID: 26274983 [TBL] [Abstract][Full Text] [Related]
14. Fiducial registration with spoiled gradient-echo magnetic resonance imaging enhances the accuracy of subthalamic nucleus targeting. Ben-Haim S; Gologorsky Y; Monahan A; Weisz D; Alterman RL Neurosurgery; 2011 Oct; 69(4):870-5; discussion 875. PubMed ID: 21552170 [TBL] [Abstract][Full Text] [Related]
15. Comparison of magnetic resonance imaging sequences for depicting the subthalamic nucleus for deep brain stimulation. Nagahama H; Suzuki K; Shonai T; Aratani K; Sakurai Y; Nakamura M; Sakata M Radiol Phys Technol; 2015 Jan; 8(1):30-5. PubMed ID: 25113409 [TBL] [Abstract][Full Text] [Related]
16. Assessing accuracy of the magnetic resonance imaging-computed tomography fusion images to evaluate the electrode positions in subthalamic nucleus after deep-brain stimulation. Shin M; Penholate MF; Lefaucheur JP; Gurruchaga JM; Brugieres P; Nguyen JP Neurosurgery; 2010 Jun; 66(6):1193-202; discussion 1202. PubMed ID: 20495435 [TBL] [Abstract][Full Text] [Related]
17. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. O'Gorman RL; Shmueli K; Ashkan K; Samuel M; Lythgoe DJ; Shahidiani A; Wastling SJ; Footman M; Selway RP; Jarosz J Eur Radiol; 2011 Jan; 21(1):130-6. PubMed ID: 20652256 [TBL] [Abstract][Full Text] [Related]
18. Direct visualization of deep brain stimulation targets in patients with Parkinson's disease via 3-T quantitative susceptibility mapping. Yu K; Ren Z; Li J; Guo S; Hu Y; Li Y Acta Neurochir (Wien); 2021 May; 163(5):1335-1345. PubMed ID: 33576911 [TBL] [Abstract][Full Text] [Related]
19. Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Grewal SS; Middlebrooks EH; Kaufmann TJ; Stead M; Lundstrom BN; Worrell GA; Lin C; Baydin S; Van Gompel JJ Neurosurg Focus; 2018 Aug; 45(2):E6. PubMed ID: 30064328 [TBL] [Abstract][Full Text] [Related]
20. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. Starr PA; Christine CW; Theodosopoulos PV; Lindsey N; Byrd D; Mosley A; Marks WJ J Neurosurg; 2002 Aug; 97(2):370-87. PubMed ID: 12186466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]