BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2734 related articles for article (PubMed ID: 26295953)

  • 1. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization.
    Joshi MK; Tiwari AP; Maharjan B; Won KS; Kim HJ; Park CH; Kim CS
    Carbohydr Polym; 2016 Aug; 147():104-113. PubMed ID: 27178914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties.
    Fadaie M; Mirzaei E; Geramizadeh B; Asvar Z
    Carbohydr Polym; 2018 Nov; 199():628-640. PubMed ID: 30143171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL.
    Feng B; Tu H; Yuan H; Peng H; Zhang Y
    Biomacromolecules; 2012 Dec; 13(12):3917-25. PubMed ID: 23131188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous regeneration of calcium lactate and cellulose into PCL nanofiber for biomedical application.
    Hwang TI; Kim JI; Joshi MK; Park CH; Kim CS
    Carbohydr Polym; 2019 May; 212():21-29. PubMed ID: 30832849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.
    Joshi MK; Pant HR; Tiwari AP; Maharjan B; Liao N; Kim HJ; Park CH; Kim CS
    Carbohydr Polym; 2016 Jan; 136():154-62. PubMed ID: 26572341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-Nets Covered Composite Nanofibers with Enhanced Biocompatibility and Mechanical Properties for Bone Tissue Engineering.
    Tiwari AP; Joshi MK; Park CH; Kim CS
    J Nanosci Nanotechnol; 2018 Jan; 18(1):529-537. PubMed ID: 29768878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering.
    Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T
    Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Poly(
    Morouço P; Biscaia S; Viana T; Franco M; Malça C; Mateus A; Moura C; Ferreira FC; Mitchell G; Alves NM
    Biomed Res Int; 2016; 2016():1596157. PubMed ID: 27872844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.
    Ao C; Niu Y; Zhang X; He X; Zhang W; Lu C
    Int J Biol Macromol; 2017 Apr; 97():568-573. PubMed ID: 28087448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 137.