These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 26296020)

  • 21. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses.
    Yang MH; Li SN; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 May; 17(20):13355-65. PubMed ID: 25923843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr-Cu-Al-Mo Bulk Metallic Glasses.
    Wang T; Wang L; Wang Q; Liu Y; Hui X
    Sci Rep; 2017 Apr; 7(1):1238. PubMed ID: 28450711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal genes in a marginal glass-forming system of Ni
    Wen TQ; Tang L; Sun Y; Ho KM; Wang CZ; Wang N
    Phys Chem Chem Phys; 2017 Nov; 19(45):30429-30438. PubMed ID: 29104995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.
    Liu L; Qiu CL; Chen Q; Chan KC; Zhang SM
    J Biomed Mater Res A; 2008 Jul; 86(1):160-9. PubMed ID: 17957719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compositional landscape for glass formation in metal alloys.
    Na JH; Demetriou MD; Floyd M; Hoff A; Garrett GR; Johnson WL
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9031-6. PubMed ID: 24927600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The glass-forming ability of model metal-metalloid alloys.
    Zhang K; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Mar; 142(10):104504. PubMed ID: 25770548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Many Bulk Metallic Glasses Are There?
    Li Y; Zhao S; Liu Y; Gong P; Schroers J
    ACS Comb Sci; 2017 Nov; 19(11):687-693. PubMed ID: 28902986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory.
    Sato Y; Nakai C; Wakeda M; Ogata S
    Sci Rep; 2017 Aug; 7(1):7194. PubMed ID: 28775268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical Prediction and Experimental Validation of the Glass-Forming Ability and Magnetic Properties of Fe-Si-B Metallic Glasses from Atomic Structures.
    Jiang Y; Jia S; Chen S; Li X; Wang L; Han X
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric crystallization during cooling and heating in model glass-forming systems.
    Wang M; Zhang K; Li Z; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032309. PubMed ID: 25871112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural mechanism of the enhanced glass-forming ability in multicomponent alloys with positive heat of mixing.
    Wu SY; Wei SH; Guo GQ; Wang JG; Yang L
    Sci Rep; 2016 Nov; 6():38098. PubMed ID: 27897257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Phase Space of Multi-Principal-Element Alloys and Predicting the Formation of Bulk Metallic Glasses.
    Gabski M; Peterlechner M; Wilde G
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.
    Sun YT; Bai HY; Li MZ; Wang WH
    J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper.
    Xu D; Duan G; Johnson WL
    Phys Rev Lett; 2004 Jun; 92(24):245504. PubMed ID: 15245096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses.
    Ghorbani A; Askari A; Malekan M; Nili-Ahmadabadi M
    Sci Rep; 2022 Jul; 12(1):11754. PubMed ID: 35817887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical origin of glass formation from multicomponent systems.
    Hu YC; Tanaka H
    Sci Adv; 2020 Dec; 6(50):. PubMed ID: 33310854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impurity-driven nanocrystallization of Zr-based bulk amorphous alloys.
    Akdeniz MV; Mekhrabov AO
    J Nanosci Nanotechnol; 2008 Feb; 8(2):894-900. PubMed ID: 18464424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys.
    Mendelev MI; Sun Y; Zhang F; Wang CZ; Ho KM
    J Chem Phys; 2019 Dec; 151(21):214502. PubMed ID: 31822091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glass forming ability and alloying effect of a noble-metal-based glass former.
    Gonçalves LG; DaSilva CJ; Rino JP
    J Phys Chem B; 2012 Feb; 116(4):1356-9. PubMed ID: 22204441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.