These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 26296087)
1. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering. Lai JY; Cheng HY; Ma DH PLoS One; 2015; 10(8):e0136067. PubMed ID: 26296087 [TBL] [Abstract][Full Text] [Related]
2. Influence of Pre-Freezing Temperature on the Corneal Endothelial Cytocompatibility and Cell Delivery Performance of Porous Hyaluronic Acid Hydrogel Carriers. Lai JY Int J Mol Sci; 2015 Aug; 16(8):18796-811. PubMed ID: 26270663 [TBL] [Abstract][Full Text] [Related]
3. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery. Lai JY Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():411-419. PubMed ID: 26652391 [TBL] [Abstract][Full Text] [Related]
4. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells. Lu PL; Lai JY; Ma DH; Hsiue GH J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550 [TBL] [Abstract][Full Text] [Related]
5. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. Lai JY; Ma DH; Cheng HY; Sun CC; Huang SJ; Li YT; Hsiue GH J Biomater Sci Polym Ed; 2010; 21(3):359-76. PubMed ID: 20178691 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. Lai JY; Ma DH; Lai MH; Li YT; Chang RJ; Chen LM PLoS One; 2013; 8(1):e54058. PubMed ID: 23382866 [TBL] [Abstract][Full Text] [Related]
7. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Kimoto M; Shima N; Yamaguchi M; Hiraoka Y; Amano S; Yamagami S Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2337-43. PubMed ID: 24651553 [TBL] [Abstract][Full Text] [Related]
8. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Lai JY; Li YT Biomacromolecules; 2010 May; 11(5):1387-97. PubMed ID: 20355704 [TBL] [Abstract][Full Text] [Related]
9. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Lai JY; Chen KH; Hsiue GH Transplantation; 2007 Nov; 84(10):1222-32. PubMed ID: 18049106 [TBL] [Abstract][Full Text] [Related]
10. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Yeom J; Bhang SH; Kim BS; Seo MS; Hwang EJ; Cho IH; Park JK; Hahn SK Bioconjug Chem; 2010 Feb; 21(2):240-7. PubMed ID: 20078098 [TBL] [Abstract][Full Text] [Related]
11. Poly-ε-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. Kennedy S; Lace R; Carserides C; Gallagher AG; Wellings DA; Williams RL; Levis HJ J Mater Sci Mater Med; 2019 Sep; 30(9):102. PubMed ID: 31485761 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Open Porous Hyaluronic Acid Scaffolds for Tissue Engineering Using the Ice Particulate Template Method. Ko YG; Oh HH; Kawazoe N; Tateishi T; Chen G J Biomater Sci Polym Ed; 2011; 22(1-3):123-38. PubMed ID: 20546679 [TBL] [Abstract][Full Text] [Related]
14. Validation of Na,K-ATPase pump function of corneal endothelial cells for corneal regenerative medicine. Hatou S; Higa K; Inagaki E; Yoshida S; Kimura E; Hayashi R; Tsujikawa M; Tsubota K; Nishida K; Shimmura S Tissue Eng Part C Methods; 2013 Dec; 19(12):901-10. PubMed ID: 23544359 [TBL] [Abstract][Full Text] [Related]
15. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Watanabe R; Hayashi R; Kimura Y; Tanaka Y; Kageyama T; Hara S; Tabata Y; Nishida K Tissue Eng Part A; 2011 Sep; 17(17-18):2213-9. PubMed ID: 21534849 [TBL] [Abstract][Full Text] [Related]
16. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. Cerqueira MT; da Silva LP; Santos TC; Pirraco RP; Correlo VM; Reis RL; Marques AP ACS Appl Mater Interfaces; 2014 Nov; 6(22):19668-79. PubMed ID: 25361388 [TBL] [Abstract][Full Text] [Related]
17. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Segura T; Anderson BC; Chung PH; Webber RE; Shull KR; Shea LD Biomaterials; 2005 Feb; 26(4):359-71. PubMed ID: 15275810 [TBL] [Abstract][Full Text] [Related]
18. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402 [TBL] [Abstract][Full Text] [Related]
19. Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity. Lee SJ; Kim SY; Lee YM J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):506-18. PubMed ID: 17279566 [TBL] [Abstract][Full Text] [Related]
20. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]