These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 26296101)

  • 1. Focusing on shared subpockets - new developments in fragment-based drug discovery.
    Abdelraheem EM; Camacho CJ; Dömling A
    Expert Opin Drug Discov; 2015; 10(11):1179-87. PubMed ID: 26296101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interaction inhibitors: advances in anticancer drug design.
    Ferreira LG; Oliva G; Andricopulo AD
    Expert Opin Drug Discov; 2016 Oct; 11(10):957-68. PubMed ID: 27554357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of protein-protein interactions in drug discovery.
    Andrei SA; Sijbesma E; Hann M; Davis J; O'Mahony G; Perry MWD; Karawajczyk A; Eickhoff J; Brunsveld L; Doveston RG; Milroy LG; Ottmann C
    Expert Opin Drug Discov; 2017 Sep; 12(9):925-940. PubMed ID: 28695752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces.
    Rooklin D; Wang C; Katigbak J; Arora PS; Zhang Y
    J Chem Inf Model; 2015 Aug; 55(8):1585-99. PubMed ID: 26225450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationship: promising advances in drug discovery platforms.
    Wang T; Wu MB; Lin JP; Yang LR
    Expert Opin Drug Discov; 2015 Dec; 10(12):1283-300. PubMed ID: 26358617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico structure-based approaches to discover protein-protein interaction-targeting drugs.
    Shin WH; Christoffer CW; Kihara D
    Methods; 2017 Dec; 131():22-32. PubMed ID: 28802714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.
    Pérot S; Sperandio O; Miteva MA; Camproux AC; Villoutreix BO
    Drug Discov Today; 2010 Aug; 15(15-16):656-67. PubMed ID: 20685398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-spot analysis for drug discovery targeting protein-protein interactions.
    Rosell M; Fernández-Recio J
    Expert Opin Drug Discov; 2018 Apr; 13(4):327-338. PubMed ID: 29376444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pocket-based drug design: exploring pocket space.
    Zheng X; Gan L; Wang E; Wang J
    AAPS J; 2013 Jan; 15(1):228-41. PubMed ID: 23180158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting druggable binding sites at the protein-protein interface.
    Fuller JC; Burgoyne NJ; Jackson RM
    Drug Discov Today; 2009 Feb; 14(3-4):155-61. PubMed ID: 19041415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided drug design at Boehringer Ingelheim.
    Muegge I; Bergner A; Kriegl JM
    J Comput Aided Mol Des; 2017 Mar; 31(3):275-285. PubMed ID: 27650777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.
    Huang B; Kang D; Zhan P; Liu X
    Expert Opin Drug Discov; 2015 Dec; 10(12):1271-81. PubMed ID: 26372893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery.
    Winter A; Higueruelo AP; Marsh M; Sigurdardottir A; Pitt WR; Blundell TL
    Q Rev Biophys; 2012 Nov; 45(4):383-426. PubMed ID: 22971516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating protein-protein interactions: the potential of peptides.
    Nevola L; Giralt E
    Chem Commun (Camb); 2015 Feb; 51(16):3302-15. PubMed ID: 25578807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors.
    Koes DR; Dömling A; Camacho CJ
    Protein Sci; 2018 Jan; 27(1):229-232. PubMed ID: 28921842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of employing computational resources for the automation of drug discovery.
    Rosales-Hernández MC; Correa-Basurto J
    Expert Opin Drug Discov; 2015 Mar; 10(3):213-9. PubMed ID: 25682781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery.
    Ferreira LG; Andricopulo AD
    Curr Top Med Chem; 2017; 17(20):2260-2270. PubMed ID: 28240184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of physicochemical and molecular properties in drug design: navigation in the "drug-like" chemical space.
    Vallianatou T; Giaginis C; Tsantili-Kakoulidou A
    Adv Exp Med Biol; 2015; 822():187-94. PubMed ID: 25416989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subpocket analysis method for fragment-based drug discovery.
    Kalliokoski T; Olsson TS; Vulpetti A
    J Chem Inf Model; 2013 Jan; 53(1):131-41. PubMed ID: 23327721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.