These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. One-dimensional lattice of oscillators coupled through power-law interactions: continuum limit and dynamics of spatial Fourier modes. Gupta S; Potters M; Ruffo S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066201. PubMed ID: 23005190 [TBL] [Abstract][Full Text] [Related]
23. Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators. LaMar MD; Smith GD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046206. PubMed ID: 20481806 [TBL] [Abstract][Full Text] [Related]
24. Impact of a leader on cluster synchronization. Jalan S; Singh A; Acharyya S; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022901. PubMed ID: 25768564 [TBL] [Abstract][Full Text] [Related]
25. Quantifying the synchronizability of externally driven oscillators. Stefański A Chaos; 2008 Mar; 18(1):013106. PubMed ID: 18377057 [TBL] [Abstract][Full Text] [Related]
26. Clustering behaviors in networks of integrate-and-fire oscillators. Mauroy A; Sepulchre R Chaos; 2008 Sep; 18(3):037122. PubMed ID: 19045496 [TBL] [Abstract][Full Text] [Related]
27. Periodic synchronization and chimera in conformist and contrarian oscillators. Hong H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062924. PubMed ID: 25019868 [TBL] [Abstract][Full Text] [Related]
28. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. Maistrenko Y; Penkovsky B; Rosenblum M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060901. PubMed ID: 25019710 [TBL] [Abstract][Full Text] [Related]
29. Chimeralike states in an ensemble of globally coupled oscillators. Yeldesbay A; Pikovsky A; Rosenblum M Phys Rev Lett; 2014 Apr; 112(14):144103. PubMed ID: 24765969 [TBL] [Abstract][Full Text] [Related]
30. Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. Niyogi RK; English LQ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066213. PubMed ID: 20365260 [TBL] [Abstract][Full Text] [Related]
31. Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators. Nishimura J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012916. PubMed ID: 25679691 [TBL] [Abstract][Full Text] [Related]
32. External periodic driving of large systems of globally coupled phase oscillators. Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486 [TBL] [Abstract][Full Text] [Related]
33. A partial synchronization theorem. Pogromsky AY Chaos; 2008 Sep; 18(3):037107. PubMed ID: 19045481 [TBL] [Abstract][Full Text] [Related]
38. Global synchronization in lattices of coupled chaotic systems. Juang J; Li CL; Liang YH Chaos; 2007 Sep; 17(3):033111. PubMed ID: 17902993 [TBL] [Abstract][Full Text] [Related]
39. Breaking synchrony by heterogeneity in complex networks. Denker M; Timme M; Diesmann M; Wolf F; Geisel T Phys Rev Lett; 2004 Feb; 92(7):074103. PubMed ID: 14995855 [TBL] [Abstract][Full Text] [Related]
40. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]