These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26296125)

  • 1. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials.
    Choi JH; Cui P; Lan H; Zhang Z
    Phys Rev Lett; 2015 Aug; 115(6):066403. PubMed ID: 26296125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors.
    Jiang Z; Liu Z; Li Y; Duan W
    Phys Rev Lett; 2017 Jun; 118(26):266401. PubMed ID: 28707944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene.
    Galicia Hernandez JM; Fernandez-Escamilla HN; Guerrero Sanchez J; Takeuchi N
    Sci Rep; 2022 Dec; 12(1):20979. PubMed ID: 36470955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many-body effects and excitonic features in 2D biphenylene carbon.
    Lüder J; Puglia C; Ottosson H; Eriksson O; Sanyal B; Brena B
    J Chem Phys; 2016 Jan; 144(2):024702. PubMed ID: 26772582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly Bound Excitons and Anisotropic Linear Absorption in Monolayer Graphullerene.
    Champagne A; Camarasa-Gómez M; Ricci F; Kronik L; Neaton JB
    Nano Lett; 2024 Jun; 24(23):7033-7039. PubMed ID: 38805193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton Band Structure in Two-Dimensional Materials.
    Cudazzo P; Sponza L; Giorgetti C; Reining L; Sottile F; Gatti M
    Phys Rev Lett; 2016 Feb; 116(6):066803. PubMed ID: 26919006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Electronic, Thermoelectric, and Excitonic Properties of Two-Dimensional Group-III Nitrides through Alloying for Optoelectronic Devices (B
    Wines D; Ersan F; Ataca C
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46416-46428. PubMed ID: 32942852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superbound Excitons in 2D Phosphorene Oxides.
    Lu Y; Zhu X
    J Phys Chem A; 2019 Jan; 123(1):21-25. PubMed ID: 30521340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate effect on excitonic shift and radiative lifetime of two-dimensional materials.
    Guo C; Xu J; Ping Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33647889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling excitons in two-dimensional
    Guassi MR; Besse R; Piotrowski MJ; C Rêgo CR; Guedes-Sobrinho D; da Rosa AL; Cavalheiro Dias A
    Sci Rep; 2024 May; 14(1):11710. PubMed ID: 38778075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiparticle and optical properties of strained stanene and stanane.
    Lu P; Wu L; Yang C; Liang D; Quhe R; Guan P; Wang S
    Sci Rep; 2017 Jun; 7(1):3912. PubMed ID: 28634387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flat-Band-Enabled Triplet Excitonic Insulator in a Diatomic Kagome Lattice.
    Sethi G; Zhou Y; Zhu L; Yang L; Liu F
    Phys Rev Lett; 2021 May; 126(19):196403. PubMed ID: 34047585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides.
    Wang Q; Wu L; Urban A; Cao H; Lu P
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular dichroism in two-dimensional BC
    Adhikary S; Dutta S
    J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38064753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating Solvatochromic Shifts in Two-Dimensional Photocatalysts by Solving the Bethe-Salpeter Equation Coupled with Implicit Solvation Method.
    Kim SJ; Lebègue S; Ringe S; Kim H
    J Phys Chem Lett; 2024 May; 15(17):4575-4580. PubMed ID: 38639559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitonic absorption spectra in graphene nanoflakes: Tuning of exciton binding energy by dielectric environments.
    Wang H; Sheng W
    J Chem Phys; 2017 Feb; 146(8):084705. PubMed ID: 28249450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huge excitonic effects in layered hexagonal boron nitride.
    Arnaud B; Lebègue S; Rabiller P; Alouani M
    Phys Rev Lett; 2006 Jan; 96(2):026402. PubMed ID: 16486604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.