BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26296207)

  • 1. Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli.
    Cheng G; Li B; Wang C; Zhang H; Liang G; Weng Z; Hao H; Wang X; Liu Z; Dai M; Wang Y; Yuan Z
    PLoS One; 2015; 10(8):e0136450. PubMed ID: 26296207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo.
    Wang X; Martínez MA; Cheng G; Liu Z; Huang L; Dai M; Chen D; Martínez-Larrañaga MR; Anadón A; Yuan Z
    Drug Metab Rev; 2016 May; 48(2):159-82. PubMed ID: 27285897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of quinoxaline 1, 4-dioxides resistance in Escherichia coli and molecular change under resistance selection.
    Guo W; Hao H; Dai M; Wang Y; Huang L; Peng D; Wang X; Wang H; Yao M; Sun Y; Liu Z; Yuan Z
    PLoS One; 2012; 7(8):e43322. PubMed ID: 22952665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro.
    Huang XJ; Zhang HH; Wang X; Huang LL; Zhang LY; Yan CX; Liu Y; Yuan ZH
    Chem Biol Interact; 2010 May; 185(3):227-34. PubMed ID: 20188712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-
    Xu F; Cheng G; Hao H; Wang Y; Wang X; Chen D; Peng D; Liu Z; Yuan Z; Dai M
    Front Microbiol; 2016; 7():1948. PubMed ID: 28018297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli.
    Suter W; Rosselet A; Knüsel F
    Antimicrob Agents Chemother; 1978 May; 13(5):770-83. PubMed ID: 352264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold.
    Agrawal N; Bhardwaj A
    Chem Biol Drug Des; 2022 Sep; 100(3):346-363. PubMed ID: 35610776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity and mechanism of action of ε-poly-L-lysine.
    Ye R; Xu H; Wan C; Peng S; Wang L; Xu H; Aguilar ZP; Xiong Y; Zeng Z; Wei H
    Biochem Biophys Res Commun; 2013 Sep; 439(1):148-53. PubMed ID: 23939043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi.
    Zhao Y; Cheng G; Hao H; Pan Y; Liu Z; Dai M; Yuan Z
    BMC Vet Res; 2016 Sep; 12(1):186. PubMed ID: 27600955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides.
    Wang X; Zhang H; Huang L; Pan Y; Li J; Chen D; Cheng G; Hao H; Tao Y; Liu Z; Yuan Z
    Chem Res Toxicol; 2015 Mar; 28(3):470-81. PubMed ID: 25626015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression.
    Hwang D; Lim YH
    Sci Rep; 2015 May; 5():10029. PubMed ID: 25942564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells.
    Wang X; Bai Y; Cheng G; Ihsan A; Zhu F; Wang Y; Tao Y; Chen D; Dai M; Liu Z; Yuan Z
    Toxicology; 2016 Mar; 350-352():1-14. PubMed ID: 27046791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions.
    Cheng G; Sa W; Cao C; Guo L; Hao H; Liu Z; Wang X; Yuan Z
    Front Pharmacol; 2016; 7():64. PubMed ID: 27047380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinoxaline 1,4-dioxides as anticancer and hypoxia-selective drugs.
    Gali-Muhtasib HU; Haddadin MJ; Rahhal DN; Younes IH
    Oncol Rep; 2001; 8(3):679-84. PubMed ID: 11295102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological activity of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide against E. histolytica and their analysis as potential thioredoxin reductase inhibitors.
    Soto-Sánchez J; Caro-Gómez LA; Paz-González AD; Marchat LA; Rivera G; Moo-Puc R; Arias DG; Ramírez-Moreno E
    Parasitol Res; 2020 Feb; 119(2):695-711. PubMed ID: 31907668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationships of novel antibacterial translation inhibitors: 3,5-diamino-piperidinyl triazines.
    Zhou Y; Sun Z; Froelich JM; Hermann T; Wall D
    Bioorg Med Chem Lett; 2006 Oct; 16(20):5451-6. PubMed ID: 16890435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites.
    Liu Q; Zhang J; Luo X; Ihsan A; Liu X; Dai M; Cheng G; Hao H; Wang X; Yuan Z
    Food Chem Toxicol; 2016 Jul; 93():145-57. PubMed ID: 27170491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid.
    Giddens SR; Bean DC
    Int J Antimicrob Agents; 2007 Jan; 29(1):93-7. PubMed ID: 17189100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative DNA damage is important to the evolution of antibiotic resistance: evidence of mutation bias and its medicinal implications.
    Wang ZY; Xiong M; Fu LY; Zhang HY
    J Biomol Struct Dyn; 2013; 31(7):729-33. PubMed ID: 22908856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli.
    Goswami M; Mangoli SH; Jawali N
    Antimicrob Agents Chemother; 2006 Mar; 50(3):949-54. PubMed ID: 16495256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.