These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 26296286)
41. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540 [TBL] [Abstract][Full Text] [Related]
42. One-step optogenetics with multifunctional flexible polymer fibers. Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915 [TBL] [Abstract][Full Text] [Related]
43. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Ji B; Ge C; Guo Z; Wang L; Wang M; Xie Z; Xu Y; Li H; Yang B; Wang X; Li C; Liu J Biosens Bioelectron; 2020 Apr; 153():112009. PubMed ID: 31989934 [TBL] [Abstract][Full Text] [Related]
45. An integrated multi-electrode-optrode array for in vitro optogenetics. Welkenhuysen M; Hoffman L; Luo Z; De Proft A; Van den Haute C; Baekelandt V; Debyser Z; Gielen G; Puers R; Braeken D Sci Rep; 2016 Feb; 6():20353. PubMed ID: 26832455 [TBL] [Abstract][Full Text] [Related]
46. Quantitative simulation of extracellular single unit recording from the surface of cortex. Hill M; Rios E; Sudhakar SK; Roossien DH; Caldwell C; Cai D; Ahmed OJ; Lempka SF; Chestek CA J Neural Eng; 2018 Oct; 15(5):056007. PubMed ID: 29923502 [TBL] [Abstract][Full Text] [Related]
47. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor. Ghitani N; Bayguinov PO; Ma Y; Jackson MB J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462 [TBL] [Abstract][Full Text] [Related]
48. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries. Wang X; Gkogkidis CA; Iljina O; Fiederer LDJ; Henle C; Mader I; Kaminsky J; Stieglitz T; Gierthmuehlen M; Ball T J Neural Eng; 2017 Oct; 14(5):056004. PubMed ID: 28597847 [TBL] [Abstract][Full Text] [Related]
49. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites. Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568 [TBL] [Abstract][Full Text] [Related]
50. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates. Ju N; Jiang R; Macknik SL; Martinez-Conde S; Tang S PLoS Biol; 2018 Aug; 16(8):e2005839. PubMed ID: 30089111 [TBL] [Abstract][Full Text] [Related]
51. Patterned optogenetic modulation of neurovascular and metabolic signals. Richner TJ; Baumgartner R; Brodnick SK; Azimipour M; Krugner-Higby LA; Eliceiri KW; Williams JC; Pashaie R J Cereb Blood Flow Metab; 2015 Jan; 35(1):140-7. PubMed ID: 25388678 [TBL] [Abstract][Full Text] [Related]
54. Recording of single-unit activities with flexible micro-electrocorticographic array in rats for decoding of whole-body navigation. Lo YT; Jiang L; Woodington B; Middya S; Braendlein M; Lam JLW; Lim MJR; Ng VYP; Rao JP; Chan DWS; Ang BT J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 38986465 [No Abstract] [Full Text] [Related]
55. Evaluation of microelectrode materials for direct-current electrocorticography. Li C; Narayan RK; Wu PM; Rajan N; Wu Z; Mehan N; Golanov EV; Ahn CH; Hartings JA J Neural Eng; 2016 Feb; 13(1):016008. PubMed ID: 26655565 [TBL] [Abstract][Full Text] [Related]
56. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370 [TBL] [Abstract][Full Text] [Related]
57. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778 [TBL] [Abstract][Full Text] [Related]
58. On-Probe Neural Interface ASIC for Combined Electrical Recording and Optogenetic Stimulation. Ramezani R; Liu Y; Dehkhoda F; Soltan A; Haci D; Zhao H; Firfilionis D; Hazra A; Cunningham MO; Jackson A; Constandinou TG; Degenaar P IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):576-588. PubMed ID: 29877821 [TBL] [Abstract][Full Text] [Related]
59. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Park DW; Brodnick SK; Ness JP; Atry F; Krugner-Higby L; Sandberg A; Mikael S; Richner TJ; Novello J; Kim H; Baek DH; Bong J; Frye ST; Thongpang S; Swanson KI; Lake W; Pashaie R; Williams JC; Ma Z Nat Protoc; 2016 Nov; 11(11):2201-2222. PubMed ID: 27735935 [TBL] [Abstract][Full Text] [Related]
60. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Packer AM; Russell LE; Dalgleish HW; Häusser M Nat Methods; 2015 Feb; 12(2):140-6. PubMed ID: 25532138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]