These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26296357)

  • 1. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.
    Lin YY; Hung KC; Hsu SH
    Biointerphases; 2015 Sep; 10(3):031006. PubMed ID: 26296357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion.
    Hsu SH; Dai LG; Hung YM; Dai NT
    Int J Nanomedicine; 2018; 13():5485-5497. PubMed ID: 30271142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of biodegradable polyurethane microspheres by a facile and green process.
    Lin CY; Hsu SH
    J Biomed Mater Res B Appl Biomater; 2015 May; 103(4):878-87. PubMed ID: 25164115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-resistant polyurethane via surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate.
    Jin Z; Feng W; Zhu S; Sheardown H; Brash JL
    J Biomed Mater Res A; 2009 Dec; 91(4):1189-201. PubMed ID: 19148931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion.
    Ou CW; Su CH; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5685-94. PubMed ID: 24689354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers.
    Chien YC; Chuang WT; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5419-5429. PubMed ID: 28165708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of waterborne polyurethane containing poly(3-hydroxybutyrate) as new biodegradable elastomers.
    Hsu SH; Hsieh CT; Sun YM
    J Mater Chem B; 2015 Dec; 3(47):9089-9097. PubMed ID: 32263122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings.
    Yoo HJ; Kim HD
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):326-33. PubMed ID: 17973247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films.
    Ooya T; Sakata Y; Choi HW; Takeuchi T
    Acta Biomater; 2016 Jul; 38():163-7. PubMed ID: 27090591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.
    Tsai YC; Li S; Hu SG; Chang WC; Jeng US; Hsu SH
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27613-23. PubMed ID: 26651013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications.
    Larrañaga A; Guay-Bégin AA; Chevallier P; Sabbatier G; Fernández J; Laroche G; Sarasua JR
    Biomatter; 2014; 4():e27979. PubMed ID: 24509417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs.
    da Silva GR; da Silva Cunha A; Ayres E; Oréfice RL
    J Mater Sci Mater Med; 2009 Feb; 20(2):481-7. PubMed ID: 18853235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of novel biodegradable folate conjugated polyurethanes.
    Yu L; Zhou L; Ding M; Li J; Tan H; Fu Q; He X
    J Colloid Interface Sci; 2011 Jun; 358(2):376-83. PubMed ID: 21470617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties.
    Kara F; Aksoy EA; Yuksekdag Z; Hasirci N; Aksoy S
    Carbohydr Polym; 2014 Nov; 112():39-47. PubMed ID: 25129714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol click modification of cyclic disulfide containing biodegradable polyurethane urea elastomers.
    Fang J; Ye SH; Wang J; Zhao T; Mo X; Wagner WR
    Biomacromolecules; 2015 May; 16(5):1622-33. PubMed ID: 25891476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy visualization of poly(urethane urea) microphase rearrangements under aqueous environment.
    Agnihotri A; Garrett JT; Runt J; Siedlecki CA
    J Biomater Sci Polym Ed; 2006; 17(1-2):227-38. PubMed ID: 16411611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.