These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
637 related articles for article (PubMed ID: 26296501)
1. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Zerbi V; Grandjean J; Rudin M; Wenderoth N Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501 [TBL] [Abstract][Full Text] [Related]
2. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
3. Functional connectivity in the rat at 11.7T: Impact of physiological noise in resting state fMRI. Kalthoff D; Seehafer JU; Po C; Wiedermann D; Hoehn M Neuroimage; 2011 Feb; 54(4):2828-39. PubMed ID: 20974263 [TBL] [Abstract][Full Text] [Related]
4. Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Jo HJ; Saad ZS; Simmons WK; Milbury LA; Cox RW Neuroimage; 2010 Aug; 52(2):571-82. PubMed ID: 20420926 [TBL] [Abstract][Full Text] [Related]
5. Improved 7 Tesla resting-state fMRI connectivity measurements by cluster-based modeling of respiratory volume and heart rate effects. Pinto J; Nunes S; Bianciardi M; Dias A; Silveira LM; Wald LL; Figueiredo P Neuroimage; 2017 Jun; 153():262-272. PubMed ID: 28392488 [TBL] [Abstract][Full Text] [Related]
7. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
8. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination. Shirer WR; Jiang H; Price CM; Ng B; Greicius MD Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368 [TBL] [Abstract][Full Text] [Related]
9. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Esposito F; Aragri A; Pesaresi I; Cirillo S; Tedeschi G; Marciano E; Goebel R; Di Salle F Magn Reson Imaging; 2008 Sep; 26(7):905-13. PubMed ID: 18486388 [TBL] [Abstract][Full Text] [Related]
10. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
11. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI. Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936 [TBL] [Abstract][Full Text] [Related]
12. Functional connectivity hubs of the mouse brain. Liska A; Galbusera A; Schwarz AJ; Gozzi A Neuroimage; 2015 Jul; 115():281-91. PubMed ID: 25913701 [TBL] [Abstract][Full Text] [Related]
13. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504 [TBL] [Abstract][Full Text] [Related]
14. Robust brain parcellation using sparse representation on resting-state fMRI. Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576 [TBL] [Abstract][Full Text] [Related]
15. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. Mowinckel AM; Espeseth T; Westlye LT Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals. Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629 [No Abstract] [Full Text] [Related]
18. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study. Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247 [TBL] [Abstract][Full Text] [Related]
19. Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks. Malherbe C; Messé A; Bardinet E; Pélégrini-Issac M; Perlbarg V; Marrelec G; Worbe Y; Yelnik J; Lehéricy S; Benali H Brain Connect; 2014 Apr; 4(3):181-92. PubMed ID: 24575752 [TBL] [Abstract][Full Text] [Related]
20. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain. Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]