BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26296537)

  • 1. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    Microb Cell Fact; 2015 Aug; 14():122. PubMed ID: 26296537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    PLoS One; 2013; 8(10):e76149. PubMed ID: 24098433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of pH and oxygen supply on production of 2,3-butanediol from biodiesel-derived glycerol by Bacillus amyloliquefaciens].
    Yang T; Rao Z; Zhang X; Xu M; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1860-4. PubMed ID: 24660634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production.
    Yang TW; Rao ZM; Zhang X; Xu MJ; Xu ZH; Yang ST
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7651-8. PubMed ID: 23797331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens.
    Yang T; Rao Z; Zhang X; Lin Q; Xia H; Xu Z; Yang S
    J Basic Microbiol; 2011 Dec; 51(6):650-8. PubMed ID: 21780143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6.
    Kim T; Cho S; Woo HM; Lee SM; Lee J; Um Y; Seo JH
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2821-2830. PubMed ID: 28078395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens.
    Zhang Y; Li S; Liu L; Wu J
    Bioresour Technol; 2013 Feb; 130():256-60. PubMed ID: 23306133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels.
    Yang T; Rao Z; Hu G; Zhang X; Liu M; Dai Y; Xu M; Xu Z; Yang ST
    Biotechnol Biofuels; 2015; 8():129. PubMed ID: 26312069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation.
    Meng W; Xiao D; Wang R
    World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and scale-up of 2,3-butanediol production by Bacillus amyloliquefaciens B10-127.
    Yang T; Zhang X; Rao Z; Gu S; Xia H; Xu Z
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1563-74. PubMed ID: 22805938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308.
    Sikora B; Kubik C; Kalinowska H; Gromek E; Białkowska A; Jędrzejczak-Krzepkowska M; Schüett F; Turkiewicz M
    Prep Biochem Biotechnol; 2016 Aug; 46(6):610-9. PubMed ID: 26460787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations.
    Petrov K; Petrova P
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):943-9. PubMed ID: 20361325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Liang K; Shen CR
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High production of acetoin from glycerol by Bacillus subtilis 35.
    Tsigoriyna L; Petrova P; Petrov K
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):175-185. PubMed ID: 36454254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.