These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 26296746)
1. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. Pankoke H; Höpfner I; Matuszak A; Beyschlag W; Müller C Phytochemistry; 2015 Oct; 118():149-61. PubMed ID: 26296746 [TBL] [Abstract][Full Text] [Related]
2. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. De Deyn GB; Biere A; van der Putten WH; Wagenaar R; Klironomos JN Oecologia; 2009 Jun; 160(3):433-42. PubMed ID: 19271240 [TBL] [Abstract][Full Text] [Related]
3. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major. Pankoke H; Buschmann T; Müller C Phytochemistry; 2013 Oct; 94():99-107. PubMed ID: 23773298 [TBL] [Abstract][Full Text] [Related]
4. Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata. Bennett AE; Macrae AM; Moore BD; Caul S; Johnson SN PLoS One; 2013; 8(6):e66053. PubMed ID: 23840398 [TBL] [Abstract][Full Text] [Related]
5. Neighbor species differentially alter resistance phenotypes in Plantago. Barton KE; Bowers MD Oecologia; 2006 Dec; 150(3):442-52. PubMed ID: 16944243 [TBL] [Abstract][Full Text] [Related]
6. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae). Pankoke H; Gehring R; Müller C J Insect Physiol; 2015 Nov; 82():99-108. PubMed ID: 26306994 [TBL] [Abstract][Full Text] [Related]
7. Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status. Wang M; Bezemer TM; van der Putten WH; Biere A J Chem Ecol; 2015 Nov; 41(11):1006-17. PubMed ID: 26552915 [TBL] [Abstract][Full Text] [Related]
8. Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field. Walter J; Kreyling J; Singh BK; Jentsch A Plant Biol (Stuttg); 2016 Mar; 18(2):262-70. PubMed ID: 26284575 [TBL] [Abstract][Full Text] [Related]
9. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Schweiger R; Baier MC; Müller C Mol Plant Microbe Interact; 2014 Dec; 27(12):1403-12. PubMed ID: 25162317 [TBL] [Abstract][Full Text] [Related]
10. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Orłowska E; Godzik B; Turnau K Environ Pollut; 2012 Sep; 168():121-30. PubMed ID: 22609863 [TBL] [Abstract][Full Text] [Related]
11. Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Quintero C; Bowers MD Oecologia; 2012 Feb; 168(2):471-81. PubMed ID: 21913028 [TBL] [Abstract][Full Text] [Related]
12. Effects of Arbuscular Mycorrhiza on Plant Chemistry and the Development and Behavior of a Generalist Herbivore. Tomczak VV; Schweiger R; Müller C J Chem Ecol; 2016 Dec; 42(12):1247-1258. PubMed ID: 27787678 [TBL] [Abstract][Full Text] [Related]
13. Impact of defoliation on the regrowth capacity and the shoot metabolite profile of Plantago lanceolata L. Pankoke H; Müller C Plant Physiol Biochem; 2013 Oct; 71():325-33. PubMed ID: 24036062 [TBL] [Abstract][Full Text] [Related]
14. Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. Fuchs A; Bowers MD J Chem Ecol; 2004 Sep; 30(9):1723-41. PubMed ID: 15586671 [TBL] [Abstract][Full Text] [Related]
15. Soil organisms shape the competition between grassland plant species. Sabais AC; Eisenhauer N; König S; Renker C; Buscot F; Scheu S Oecologia; 2012 Dec; 170(4):1021-32. PubMed ID: 22678109 [TBL] [Abstract][Full Text] [Related]
16. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae). Pankoke H; Bowers MD; Dobler S Insect Biochem Mol Biol; 2012 Jun; 42(6):426-34. PubMed ID: 22446106 [TBL] [Abstract][Full Text] [Related]
17. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Schweiger R; Baier MC; Persicke M; Müller C Nat Commun; 2014 May; 5():3886. PubMed ID: 24848943 [TBL] [Abstract][Full Text] [Related]
18. Interactive Effects of Mycorrhizae, Soil Phosphorus, and Light on Growth and Induction and Priming of Defense in Qu L; Wang M; Biere A Front Plant Sci; 2021; 12():647372. PubMed ID: 33833771 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Frosi G; Barros VA; Oliveira MT; Santos M; Ramos DG; Maia LC; Santos MG Tree Physiol; 2018 Jan; 38(1):25-36. PubMed ID: 28981870 [TBL] [Abstract][Full Text] [Related]
20. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Karasawa T; Hodge A; Fitter AH Plant Cell Environ; 2012 Apr; 35(4):819-28. PubMed ID: 22070553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]