These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. AbdElgawad H; Avramova V; Baggerman G; Van Raemdonck G; Valkenborg D; Van Ostade X; Guisez Y; Prinsen E; Asard H; Van den Ende W; Beemster GTS Plant Cell Environ; 2020 Sep; 43(9):2254-2271. PubMed ID: 32488892 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Liu J; Xia Z; Wang M; Zhang X; Yang T; Wu J Plant Physiol Biochem; 2013 Dec; 73():114-20. PubMed ID: 24080398 [TBL] [Abstract][Full Text] [Related]
4. The Maize Leaf: Another Perspective on Growth Regulation. Avramova V; Sprangers K; Beemster GTS Trends Plant Sci; 2015 Dec; 20(12):787-797. PubMed ID: 26490722 [TBL] [Abstract][Full Text] [Related]
5. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. Ahmad S; Muhammad I; Wang GY; Zeeshan M; Yang L; Ali I; Zhou XB BMC Plant Biol; 2021 Aug; 21(1):368. PubMed ID: 34384391 [TBL] [Abstract][Full Text] [Related]
6. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density. Wei S; Wang X; Jiang D; Dong S BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Cao L; Lu X; Wang G; Zhang P; Fu J; Wang Z; Wei L; Wang T Mol Genet Genomics; 2021 Nov; 296(6):1203-1219. PubMed ID: 34601650 [TBL] [Abstract][Full Text] [Related]
8. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.). Gou W; Zheng P; Tian L; Gao M; Zhang L; Akram NA; Ashraf M J Plant Res; 2017 May; 130(3):599-609. PubMed ID: 28324190 [TBL] [Abstract][Full Text] [Related]
9. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Aydinoglu F; Lucas SJ Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233 [TBL] [Abstract][Full Text] [Related]
10. GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis. Zhou T; Yang X; Wang L; Xu J; Zhang X Plant Mol Biol; 2014 May; 85(1-2):163-77. PubMed ID: 24473898 [TBL] [Abstract][Full Text] [Related]
11. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Nelissen H; Sun XH; Rymen B; Jikumaru Y; Kojima M; Takebayashi Y; Abbeloos R; Demuynck K; Storme V; Vuylsteke M; De Block J; Herman D; Coppens F; Maere S; Kamiya Y; Sakakibara H; Beemster GTS; Inzé D Plant Biotechnol J; 2018 Feb; 16(2):615-627. PubMed ID: 28730636 [TBL] [Abstract][Full Text] [Related]
12. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. Aydinoglu F Planta; 2020 Jan; 251(2):38. PubMed ID: 31907623 [TBL] [Abstract][Full Text] [Related]
13. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Kaya C; Şenbayram M; Akram NA; Ashraf M; Alyemeni MN; Ahmad P Sci Rep; 2020 Apr; 10(1):6432. PubMed ID: 32286357 [TBL] [Abstract][Full Text] [Related]
14. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. Wang B; Liu C; Zhang D; He C; Zhang J; Li Z BMC Plant Biol; 2019 Aug; 19(1):335. PubMed ID: 31370805 [TBL] [Abstract][Full Text] [Related]
15. SIAMESE-RELATED1 Is Regulated Posttranslationally and Participates in Repression of Leaf Growth under Moderate Drought. Dubois M; Selden K; Bediée A; Rolland G; Baumberger N; Noir S; Bach L; Lamy G; Granier C; Genschik P Plant Physiol; 2018 Apr; 176(4):2834-2850. PubMed ID: 29472278 [TBL] [Abstract][Full Text] [Related]
16. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Kakumanu A; Ambavaram MM; Klumas C; Krishnan A; Batlang U; Myers E; Grene R; Pereira A Plant Physiol; 2012 Oct; 160(2):846-67. PubMed ID: 22837360 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
18. Liang Y; Jiang Y; Du M; Li B; Chen L; Chen M; Jin D; Wu J Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31072025 [TBL] [Abstract][Full Text] [Related]
19. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]