BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 26297823)

  • 1. Identification of substrates of F-box protein involved in methylmercury toxicity in yeast cells.
    Lee JY; Ishida Y; Kuge S; Naganuma A; Hwang GW
    FEBS Lett; 2015 Sep; 589(19 Pt B):2720-5. PubMed ID: 26297823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of F-box proteins that are involved in resistance to methylmercury in Saccharomyces cerevisiae.
    Hwang GW; Ishida Y; Naganuma A
    FEBS Lett; 2006 Dec; 580(30):6813-8. PubMed ID: 17141224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the novel F-box protein Ymr258c confers resistance to methylmercury in Saccharomyces cerevisiae.
    Hwang GW; Wada N; Kuge S; Naganuma A
    J Toxicol Sci; 2009 Oct; 34(4):413-6. PubMed ID: 19652464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitin-conjugating enzyme Cdc34 mediates methylmercury resistance in Saccharomyces cerevisiae by increasing Whi2 degradation.
    Hwang GW; Ogiwara Y; Takahashi T; Naganuma A
    J Toxicol Sci; 2012; 37(6):1283-6. PubMed ID: 23208445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury.
    Hwang GW; Furuchi T; Naganuma A
    FASEB J; 2002 May; 16(7):709-11. PubMed ID: 11978736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the ubiquitin-conjugating enzyme Ubc2 confers resistance to methylmercury in budding yeast by promoting Whi2 degradation.
    Hwang GW; Mastuyama F; Takahashi T; Lee JY; Naganuma A
    J Toxicol Sci; 2013; 38(2):301-3. PubMed ID: 23535409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin-proteasome system as a factor that determine the sensitivity to methylmercury.
    Hwang GW
    Yakugaku Zasshi; 2007 Mar; 127(3):463-8. PubMed ID: 17329932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins.
    Hwang GW; Sasaki D; Naganuma A
    Mol Pharmacol; 2005 Oct; 68(4):1074-8. PubMed ID: 15998872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of pyruvate into mitochondria is involved in methylmercury toxicity.
    Lee JY; Ishida Y; Takahashi T; Naganuma A; Hwang GW
    Sci Rep; 2016 Feb; 6():21528. PubMed ID: 26899208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Proteomics Combined with Two Genetic Strategies for Screening Substrates of Ubiquitin Ligase Hrt3.
    Lan Q; Wang Y; Sun Z; Li Y; Zhang C; Chang L; Gao Y; Wu J; Wang F; Xu P
    J Proteome Res; 2020 Jan; 19(1):493-502. PubMed ID: 31789040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression and functional analysis of the F-box protein Ucc1 from other yeast species in Saccharomyces cerevisiae.
    Nakatsukasa K; Kawarasaki T; Moriyama A
    J Biosci Bioeng; 2019 Dec; 128(6):704-709. PubMed ID: 31253511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of deubiquitinating enzymes involved in methylmercury toxicity in Saccharomyces cerevisiae.
    Hwang GW; Kimura Y; Takahashi T; Lee JY; Naganuma A
    J Toxicol Sci; 2012; 37(6):1287-90. PubMed ID: 23208446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.
    Ota K; Kito K; Okada S; Ito T
    Genes Cells; 2008 Oct; 13(10):1075-85. PubMed ID: 18775025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle.
    Nakatsukasa K; Nishimura T; Byrne SD; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Okumura F; Kamura T
    Mol Cell; 2015 Jul; 59(1):22-34. PubMed ID: 25982115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New interacting partners of the F-box protein Ufo1 of yeast.
    Baranes-Bachar K; Khalaila I; Ivantsiv Y; Lavut A; Voloshin O; Raveh D
    Yeast; 2008 Oct; 25(10):733-43. PubMed ID: 18949821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Bop3 confers resistance to methylmercury in Saccharomyces cerevisiae through interaction with other proteins such as Fkh1, Rts1, and Msn2.
    Hwang GW; Furuoya Y; Hiroshima A; Furuchi T; Naganuma A
    Biochem Biophys Res Commun; 2005 May; 330(2):378-85. PubMed ID: 15796894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins.
    Mark KG; Simonetta M; Maiolica A; Seller CA; Toczyski DP
    Mol Cell; 2014 Jan; 53(1):148-61. PubMed ID: 24389104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae.
    Tsuchiya H; Arai N; Tanaka K; Saeki Y
    Biochem Biophys Res Commun; 2013 Jul; 436(3):372-6. PubMed ID: 23747422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FBXO21 mediates the ubiquitylation and proteasomal degradation of EID1.
    Watanabe K; Yumimoto K; Nakayama KI
    Genes Cells; 2015 Aug; 20(8):667-74. PubMed ID: 26085330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new regulatory pathway of mRNA export by an F-box protein, Mdm30.
    Durairaj G; Lahudkar S; Bhaumik SR
    RNA; 2014 Feb; 20(2):133-42. PubMed ID: 24327750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.