These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 26297866)
21. ORE, a eukaryotic minimal essential osmotic response element. The aldose reductase gene in hyperosmotic stress. Ferraris JD; Williams CK; Jung KY; Bedford JJ; Burg MB; García-Pérez A J Biol Chem; 1996 Aug; 271(31):18318-21. PubMed ID: 8702469 [TBL] [Abstract][Full Text] [Related]
22. Structure based peptide design, molecular dynamics and MM-PBSA studies for targeting C terminal dimerization of NFAT5 DNA binding domain. Timucin AC J Mol Graph Model; 2021 Mar; 103():107804. PubMed ID: 33248341 [TBL] [Abstract][Full Text] [Related]
23. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress. Tong EH; Guo JJ; Xu SX; Mak K; Chung SK; Chung SS; Huang AL; Ko BC PLoS One; 2009 Dec; 4(12):e8435. PubMed ID: 20041176 [TBL] [Abstract][Full Text] [Related]
24. NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia. Berga-Bolaños R; Drews-Elger K; Aramburu J; López-Rodríguez C J Immunol; 2010 Dec; 185(11):6624-35. PubMed ID: 21037089 [TBL] [Abstract][Full Text] [Related]
25. Potential Role of Gene Regulator NFAT5 in the Pathogenesis of Diabetes Mellitus. Cen L; Xing F; Xu L; Cao Y J Diabetes Res; 2020; 2020():6927429. PubMed ID: 33015193 [TBL] [Abstract][Full Text] [Related]
26. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Aramburu J; Drews-Elger K; Estrada-Gelonch A; Minguillón J; Morancho B; Santiago V; López-Rodríguez C Biochem Pharmacol; 2006 Nov; 72(11):1597-604. PubMed ID: 16904650 [TBL] [Abstract][Full Text] [Related]
27. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5. Hollborn M; Vogler S; Reichenbach A; Wiedemann P; Bringmann A; Kohen L Mol Vis; 2015; 21():360-77. PubMed ID: 25878490 [TBL] [Abstract][Full Text] [Related]
28. NFAT5 regulates transcription of the mouse telomerase reverse transcriptase gene. Fujiki T; Udono M; Kotake Y; Yamashita M; Shirahata S; Katakura Y Exp Cell Res; 2010 Dec; 316(20):3342-50. PubMed ID: 20937271 [TBL] [Abstract][Full Text] [Related]
30. SF-1 (steroidogenic factor-1), C/EBPbeta (CCAAT/enhancer binding protein), and ubiquitous transcription factors NF1 (nuclear factor 1) and Sp1 (selective promoter factor 1) are required for regulation of the mouse aldose reductase-like gene (AKR1B7) expression in adrenocortical cells. Aigueperse C; Val P; Pacot C; Darne C; Lalli E; Sassone-Corsi P; Veyssiere G; Jean C; Martinez A Mol Endocrinol; 2001 Jan; 15(1):93-111. PubMed ID: 11145742 [TBL] [Abstract][Full Text] [Related]
31. Homocysteine facilitates LOX-1 activation and endothelial death through the PKCβ and SIRT1/HSF1 mechanism: relevance to human hyperhomocysteinaemia. Hung CH; Chan SH; Chu PM; Tsai KL Clin Sci (Lond); 2015 Sep; 129(6):477-87. PubMed ID: 25982096 [TBL] [Abstract][Full Text] [Related]
32. Sox2 Deacetylation by Sirt1 Is Involved in Mouse Somatic Reprogramming. Mu WL; Wang YJ; Xu P; Hao DL; Liu XZ; Wang TT; Chen F; Chen HZ; Lv X; Liu DP Stem Cells; 2015 Jul; 33(7):2135-47. PubMed ID: 25940188 [TBL] [Abstract][Full Text] [Related]
33. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Kang ES; Woo IS; Kim HJ; Eun SY; Paek KS; Kim HJ; Chang KC; Lee JH; Lee HT; Kim JH; Nishinaka T; Yabe-Nishimura C; Seo HG Free Radic Biol Med; 2007 Aug; 43(4):535-45. PubMed ID: 17640564 [TBL] [Abstract][Full Text] [Related]
34. Transcription factor AP-1 regulates TGF-beta(1)-induced expression of aldose reductase in cultured human mesangial cells. Jiang T; Qu JJ; Nishinaka T; Zhang N Nephrology (Carlton); 2008 Jun; 13(3):212-7. PubMed ID: 18315703 [TBL] [Abstract][Full Text] [Related]
35. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Kumar R; DuMond JF; Khan SH; Thompson EB; He Y; Burg MB; Ferraris JD Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20292-20297. PubMed ID: 32747529 [TBL] [Abstract][Full Text] [Related]
36. Mutations in DNA-binding loop of NFAT5 transcription factor produce unique outcomes on protein-DNA binding and dynamics. Li M; Shoemaker BA; Thangudu RR; Ferraris JD; Burg MB; Panchenko AR J Phys Chem B; 2013 Oct; 117(42):13226-34. PubMed ID: 23734591 [TBL] [Abstract][Full Text] [Related]
37. Biochemical insight into pseudouridine synthase 7 (PUS7) as a novel interactor of sirtuin, SIRT1. Dalal S; Deshmukh P; Unni S; Padavattan S; Padmanabhan B Biochem Biophys Res Commun; 2019 Oct; 518(3):598-604. PubMed ID: 31451225 [TBL] [Abstract][Full Text] [Related]
38. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Aramburu J; López-Rodríguez C Front Immunol; 2019; 10():535. PubMed ID: 30949179 [TBL] [Abstract][Full Text] [Related]
39. Role of NFAT5 in inflammatory disorders associated with osmotic stress. Neuhofer W Curr Genomics; 2010 Dec; 11(8):584-90. PubMed ID: 21629436 [TBL] [Abstract][Full Text] [Related]
40. Recurrent Amplification of the Osmotic Stress Transcription Factor Brown TC; Nicolson NG; Man J; Gibson CE; Stenman A; Juhlin CC; Korah R; Carling T J Endocr Soc; 2020 Jul; 4(7):bvaa060. PubMed ID: 32587934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]