BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26297884)

  • 1. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.
    Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.
    Breidenbach AP; Dyment NA; Lu Y; Rao M; Shearn JT; Rowe DW; Kadler KE; Butler DL
    Tissue Eng Part A; 2015 Feb; 21(3-4):438-50. PubMed ID: 25266738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells.
    Camasão DB; Pezzoli D; Loy C; Kumra H; Levesque L; Reinhardt DP; Candiani G; Mantovani D
    Biotechnol J; 2019 Mar; 14(3):e1700768. PubMed ID: 29802760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering.
    Fu W; Liu Z; Feng B; Hu R; He X; Wang H; Yin M; Huang H; Zhang H; Wang W
    Int J Nanomedicine; 2014; 9():2335-44. PubMed ID: 24872696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression-induced structural and mechanical changes of fibrin-collagen composites.
    Kim OV; Litvinov RI; Chen J; Chen DZ; Weisel JW; Alber MS
    Matrix Biol; 2017 Jul; 60-61():141-156. PubMed ID: 27751946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications.
    Dunne LW; Iyyanki T; Hubenak J; Mathur AB
    Acta Biomater; 2014 Aug; 10(8):3630-40. PubMed ID: 24821141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells.
    Foroushani ZH; Mahdavi SS; Abdekhodaie MJ; Baradaran-Rafii A; Tabatabei MR; Mehrvar M
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111430. PubMed ID: 33255025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications.
    Sivaraman S; Ostendorff R; Fleishman B; Nagatomi J
    J Biomater Sci Polym Ed; 2015; 26(3):196-210. PubMed ID: 25495917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanorod mediated collagen scaffolds as extra cellular matrix mimics.
    Vedhanayagam M; Mohan R; Nair BU; Sreeram KJ
    Biomed Mater; 2015 Nov; 10(6):065010. PubMed ID: 26586667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment.
    Novak T; Voytik-Harbin SL; Neu CP
    Acta Biomater; 2015 Jan; 11():274-82. PubMed ID: 25257315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation.
    Battiston KG; Labow RS; Simmons CA; Santerre JP
    Acta Biomater; 2015 Sep; 24():74-86. PubMed ID: 26093069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.
    Caliari SR; Ramirez MA; Harley BA
    Biomaterials; 2011 Dec; 32(34):8990-8. PubMed ID: 21880362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.
    Lin L; Marchant RE; Zhu J; Kottke-Marchant K
    Acta Biomater; 2014 Dec; 10(12):5106-5115. PubMed ID: 25173839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and mechanics of collagen-fibrin matrices polymerized using ancrod snake venom enzyme.
    Rowe SL; Stegemann JP
    J Biomech Eng; 2009 Jun; 131(6):061012. PubMed ID: 19449966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of skin cell activities in collagen and fibrin constructs.
    Law JX; Musa F; Ruszymah BH; El Haj AJ; Yang Y
    Med Eng Phys; 2016 Sep; 38(9):854-61. PubMed ID: 27349492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering.
    Masoumi N; Johnson KL; Howell MC; Engelmayr GC
    Acta Biomater; 2013 Apr; 9(4):5974-88. PubMed ID: 23295404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.