BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26297983)

  • 21. Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae).
    Sokolova IM
    J Exp Biol; 2004 Jul; 207(Pt 15):2639-48. PubMed ID: 15201296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.
    Strobel A; Leo E; Pörtner HO; Mark FC
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Sep; 166(1):48-57. PubMed ID: 23827663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P; Agustí S
    Sci Rep; 2018 Dec; 8(1):17771. PubMed ID: 30538260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Greater vulnerability to warming of marine versus terrestrial ectotherms.
    Pinsky ML; Eikeset AM; McCauley DJ; Payne JL; Sunday JM
    Nature; 2019 May; 569(7754):108-111. PubMed ID: 31019302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inter-individual variation in mitochondrial phosphorylation efficiency predicts growth rates in ectotherms at high temperatures.
    Dawson NJ; Millet C; Selman C; Metcalfe NB
    FASEB J; 2022 Jun; 36(6):e22333. PubMed ID: 35486025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of thermal increase on aerobic capacity and swim performance in a tropical inland fish.
    McDonnell LH; Chapman LJ
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep; 199():62-70. PubMed ID: 27215345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.
    Polgar G; Khang TF; Chua T; Marshall DJ
    J Therm Biol; 2015 Jan; 47():99-108. PubMed ID: 25526660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.
    Boatman TG; Lawson T; Geider RJ
    PLoS One; 2017; 12(1):e0168796. PubMed ID: 28081236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.
    Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP
    Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An alternative explanation for global trends in thermal tolerance.
    Payne NL; Smith JA
    Ecol Lett; 2017 Jan; 20(1):70-77. PubMed ID: 27905195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in hypothermal stress-induced hepatic mitochondrial metabolic patterns between fresh water- and seawater-acclimated milkfish, Chanos chanos.
    Chang CH; Liu ZZ; Lee TH
    Sci Rep; 2019 Dec; 9(1):18502. PubMed ID: 31811227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological adaptations to reproduction. II. Mitochondrial adjustments in livers of lactating mice.
    Pichaud N; Garratt M; Ballard JW; Brooks RC
    J Exp Biol; 2013 Aug; 216(Pt 15):2889-95. PubMed ID: 23619407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ectotherm mitochondrial economy and responses to global warming.
    Sokolova IM
    Acta Physiol (Oxf); 2023 Apr; 237(4):e13950. PubMed ID: 36790303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature acclimation of mitochondria function from the hearts of a temperate wrasse (Notolabrus celidotus).
    Iftikar FI; Morash AJ; Cook DG; Herbert NA; Hickey AJ
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jun; 184():46-55. PubMed ID: 25645295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.
    Vinagre C; Mendonça V; Cereja R; Abreu-Afonso F; Dias M; Mizrahi D; Flores AAV
    PLoS One; 2018; 13(2):e0192700. PubMed ID: 29420657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal sensitivity links to cellular cardiac decline in three spiny lobsters.
    Oellermann M; Hickey AJR; Fitzgibbon QP; Smith G
    Sci Rep; 2020 Jan; 10(1):202. PubMed ID: 31937868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses.
    Cherkasov AS; Biswas PK; Ridings DM; Ringwood AH; Sokolova IM
    J Exp Biol; 2006 Apr; 209(Pt 7):1274-84. PubMed ID: 16547299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondria and the thermal limits of ectotherms.
    Chung DJ; Schulte PM
    J Exp Biol; 2020 Oct; 223(Pt 20):. PubMed ID: 33109621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.