These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26297983)

  • 41. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function.
    Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW
    Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S; Suppo C
    Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mechanistic oxygen- and temperature-limited metabolic niche framework.
    Ern R
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180540. PubMed ID: 31203757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress.
    Willis JR; Hickey AJR; Devaux JBL
    Sci Rep; 2021 May; 11(1):11074. PubMed ID: 34040122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot.
    Lah RA; Benkendorff K; Bucher D
    J Therm Biol; 2017 Feb; 64():100-108. PubMed ID: 28166939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.
    Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.
    Slot M; Rey-Sánchez C; Gerber S; Lichstein JW; Winter K; Kitajima K
    Glob Chang Biol; 2014 Sep; 20(9):2915-26. PubMed ID: 24604769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C; Baer CS
    J Evol Biol; 2021 Sep; 34(9):1432-1446. PubMed ID: 34265126
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of a gradually increasing temperature on the behavioural and physiological response of juvenile Hippocampus erectus: Thermal preference, tolerance, energy balance and growth.
    Mascaró M; Horta JL; Diaz F; Paschke K; Rosas C; Simões N
    J Therm Biol; 2019 Oct; 85():102406. PubMed ID: 31657747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal sensitivity does not determine acclimation capacity for a tropical reef fish.
    Donelson JM; Munday PL
    J Anim Ecol; 2012 Sep; 81(5):1126-31. PubMed ID: 22433064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts.
    Oellermann M; Pörtner HO; Mark FC
    J Exp Biol; 2012 Sep; 215(Pt 17):2992-3000. PubMed ID: 22660779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry.
    Gannon R; Taylor MD; Suthers IM; Gray CA; van der Meulen DE; Smith JA; Payne NL
    J Exp Biol; 2014 Sep; 217(Pt 17):3033-7. PubMed ID: 24948630
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems.
    Pörtner HO
    J Exp Biol; 2010 Mar; 213(6):881-93. PubMed ID: 20190113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seasonal changes in mitochondrial bioenergetics and physiological performance of the bluegill sunfish, Lepomis macrochirus, from a shallow, Midwest river.
    Lamptey DI; Sparks RW; De Oca RM; Skolik R; Menze MA; Martinez E
    J Therm Biol; 2022 Feb; 104():103186. PubMed ID: 35180965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata).
    Duong CA; Sepulveda CA; Graham JB; Dickson KA
    J Exp Biol; 2006 Jul; 209(Pt 14):2678-85. PubMed ID: 16809458
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicted impacts of climate warming on aerobic performance and upper thermal tolerance of six tropical freshwater fishes spanning three continents.
    Lapointe D; Cooperman MS; Chapman LJ; Clark TD; Val AL; Ferreira MS; Balirwa JS; Mbabazi D; Mwanja M; Chhom L; Hannah L; Kaufman L; Farrell AP; Cooke SJ
    Conserv Physiol; 2018; 6(1):coy056. PubMed ID: 30364036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme.
    White CR; Alton LA; Frappell PB
    Proc Biol Sci; 2012 May; 279(1734):1740-7. PubMed ID: 22158960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.