These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Free energy of cluster formation and a new scaling relation for the nucleation rate. Tanaka KK; Diemand J; Angélil R; Tanaka H J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541 [TBL] [Abstract][Full Text] [Related]
4. Large scale molecular dynamics simulations of homogeneous nucleation. Diemand J; Angélil R; Tanaka KK; Tanaka H J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094 [TBL] [Abstract][Full Text] [Related]
5. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories. Julin J; Napari I; Merikanto J; Vehkamäki H J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537 [TBL] [Abstract][Full Text] [Related]
6. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
7. Grand canonical steady-state simulation of nucleation. Horsch M; Vrabec J J Chem Phys; 2009 Nov; 131(18):184104. PubMed ID: 19916595 [TBL] [Abstract][Full Text] [Related]
8. Argon nucleation: bringing together theory, simulations, and experiment. Kalikmanov VI; Wölk J; Kraska T J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942 [TBL] [Abstract][Full Text] [Related]
10. Argon nucleation in a cryogenic nucleation pulse chamber. Iland K; Wölk J; Strey R; Kashchiev D J Chem Phys; 2007 Oct; 127(15):154506. PubMed ID: 17949172 [TBL] [Abstract][Full Text] [Related]
11. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon. Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125 [TBL] [Abstract][Full Text] [Related]
12. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation. Halonen R; Zapadinsky E; Vehkamäki H J Chem Phys; 2018 Apr; 148(16):164508. PubMed ID: 29716220 [TBL] [Abstract][Full Text] [Related]
13. Performance of some nucleation theories with a nonsharp droplet-vapor interface. Napari I; Julin J; Vehkamäki H J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399 [TBL] [Abstract][Full Text] [Related]
14. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. Römer F; Kraska T J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402 [TBL] [Abstract][Full Text] [Related]
15. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice. Liu X; Seider WD; Sinno T J Chem Phys; 2013 Mar; 138(11):114104. PubMed ID: 23534624 [TBL] [Abstract][Full Text] [Related]
16. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots. Diemand J; Angélil R; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803 [TBL] [Abstract][Full Text] [Related]