These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26298144)

  • 1. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.
    Mahmoud MA
    J Chem Phys; 2015 Aug; 143(7):074703. PubMed ID: 26298144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.
    Park JE; Kim S; Son J; Lee Y; Nam JM
    Nano Lett; 2016 Dec; 16(12):7962-7967. PubMed ID: 27960474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings.
    Seçkin S; Singh P; Jaiswal A; König TAF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes.
    Willingham B; Link S
    Opt Express; 2011 Mar; 19(7):6450-61. PubMed ID: 21451673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaction effect of radiative and non-radiative damping on the lifetime of localized surface plasmon modes in individual gold nanorods.
    Qin Y; Xu Y; Ji B; Song X; Lin J
    J Chem Phys; 2023 Mar; 158(10):104701. PubMed ID: 36922139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-coverage dependence of surface-enhanced raman scattering from gold nanocubes on self-assembled monolayers of analyte.
    Sisco PN; Murphy CJ
    J Phys Chem A; 2009 Apr; 113(16):3973-8. PubMed ID: 19271748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation.
    Hooshmand N; O'Neil D; Asiri AM; El-Sayed M
    J Phys Chem A; 2014 Sep; 118(37):8338-44. PubMed ID: 24932838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA
    Langmuir; 2013 May; 29(21):6253-61. PubMed ID: 23647422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes.
    Chen HY; He CL; Wang CY; Lin MH; Mitsui D; Eguchi M; Teranishi T; Gwo S
    ACS Nano; 2011 Oct; 5(10):8223-9. PubMed ID: 21894949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains.
    Xiong M; Jin X; Ye J
    Nanoscale; 2016 Mar; 8(9):4991-9. PubMed ID: 26864389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the orientations of gold nanorods inside highly packed 2D arrays.
    Mahmoud MA
    Phys Chem Chem Phys; 2014 Dec; 16(47):26153-62. PubMed ID: 25360895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multipole plasmon resonances in self-assembled metal hollow-nanospheres.
    Yin J; Zang Y; Xu B; Li S; Kang J; Fang Y; Wu Z; Li J
    Nanoscale; 2014 Apr; 6(8):3934-40. PubMed ID: 24162844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes.
    Chen H; Sun Z; Ni W; Woo KC; Lin HQ; Sun L; Yan C; Wang J
    Small; 2009 Sep; 5(18):2111-9. PubMed ID: 19544318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering.
    Park JE; Lee Y; Nam JM
    Nano Lett; 2018 Oct; 18(10):6475-6482. PubMed ID: 30153413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.