These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26298150)

  • 1. Coarsening mechanics of a colloidal suspension in toggled fields.
    Bauer JL; Liu Y; Kurian MJ; Swan JW; Furst EM
    J Chem Phys; 2015 Aug; 143(7):074901. PubMed ID: 26298150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Expanded State Diagram for the Directed Self-Assembly of Colloidal Suspensions in Toggled Fields.
    Kim H; Sau M; Furst EM
    Langmuir; 2020 Aug; 36(33):9926-9934. PubMed ID: 32697093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed colloidal self-assembly in toggled magnetic fields.
    Swan JW; Bauer JL; Liu Y; Furst EM
    Soft Matter; 2014 Feb; 10(8):1102-9. PubMed ID: 24795962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing the Rayleigh-Plateau Instability in Field-Directed Colloidal Assembly.
    Bauer JL; Kurian MJ; Stauffer J; Furst EM
    Langmuir; 2016 Jul; 32(26):6618-23. PubMed ID: 27254157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the spatiotemporal evolution of paramagnetic colloids in time-varying magnetic fields with Minkowski functionals.
    Hilou E; Joshi K; Biswal SL
    Soft Matter; 2020 Oct; 16(38):8799-8805. PubMed ID: 32793942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale kinetics of a field-directed colloidal phase transition.
    Swan JW; Vasquez PA; Whitson PA; Fincke EM; Wakata K; Magnus SH; De Winne F; Barratt MR; Agui JH; Green RD; Hall NR; Bohman DY; Bunnell CT; Gast AP; Furst EM
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16023-8. PubMed ID: 22988079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmutable Colloidal Crystals and Active Phase Separation via Dynamic, Directed Self-Assembly with Toggled External Fields.
    Sherman ZM; Swan JW
    ACS Nano; 2019 Jan; 13(1):764-771. PubMed ID: 30605597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations.
    Sánchez JH; Rinaldi C
    J Colloid Interface Sci; 2009 Mar; 331(2):500-6. PubMed ID: 19100560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient filamentous network structure of a colloidal suspension excited by stepwise electric fields.
    Tian Y; Zeng H; Anderson TH; Zhao B; McGuiggan P; Israelachvili J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011409. PubMed ID: 17358152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-law coarsening in network-forming phase separation governed by mechanical relaxation.
    Tateno M; Tanaka H
    Nat Commun; 2021 Feb; 12(1):912. PubMed ID: 33568666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of coupling of humans to electric and magnetic fields with frequencies between 100 Hz and 100 kHz.
    Kaune WT; Guttman JL; Kavet R
    Bioelectromagnetics; 1997; 18(1):67-76. PubMed ID: 9125234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Separation Kinetics of Dynamically Self-Assembling Nanoparticles with Toggled Interactions.
    Sherman ZM; Rosenthal H; Swan JW
    Langmuir; 2018 Jan; 34(3):1029-1041. PubMed ID: 28926713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric-field-induced ordering and pattern formation in colloidal suspensions.
    Park JS; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041409. PubMed ID: 21599160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal transport on magnetic garnet films.
    Tierno P; Sagués F; Johansen TH; Fischer TM
    Phys Chem Chem Phys; 2009 Nov; 11(42):9615-25. PubMed ID: 19851538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency transient electric and magnetic fields coupling to child body.
    Ozen S
    Radiat Prot Dosimetry; 2008; 128(1):62-7. PubMed ID: 17526911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Criticality in a non-equilibrium, driven system: charged colloidal rods (fd-viruses) in electric fields.
    Kang K; Dhont JK
    Eur Phys J E Soft Matter; 2009 Nov; 30(3):333-40. PubMed ID: 19856211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.