These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26298435)

  • 21. A bi-tapered and air-gapped beam shaping assembly used for AB-BNCT.
    Lee PY; Tang X; Geng C; Liu YH
    Appl Radiat Isot; 2021 Jan; 167():109392. PubMed ID: 33065400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.
    Khorshidi A
    Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-moderator neutron spectrometer for use in BNCT studies of the Tehran research reactor.
    Rahmani F; Ghal-Eh N; Vega-Carrillo HR
    Appl Radiat Isot; 2021 Aug; 174():109751. PubMed ID: 33962118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resumption of JRR-4 and characteristics of neutron beam for BNCT.
    Nakamura T; Horiguchi H; Kishi T; Motohashi J; Sasajima F; Kumada H
    Appl Radiat Isot; 2011 Dec; 69(12):1932-5. PubMed ID: 21621416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours.
    Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K
    Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and performance of an epithermal neutron flux detector using
    Guan X; Gong Y; Murata I; Wang T
    Appl Radiat Isot; 2021 Oct; 176():109880. PubMed ID: 34365204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.
    Tamaki S; Sakai M; Yoshihashi S; Manabe M; Zushi N; Murata I; Hoashi E; Kato I; Kuri S; Oshiro S; Nagasaki M; Horiike H
    Appl Radiat Isot; 2015 Dec; 106():72-4. PubMed ID: 26275798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simulation study on beam property of
    Tanaka K; Kajimoto T; Sakurai Y; Bengua G; Endo S
    Appl Radiat Isot; 2020 Oct; 164():109227. PubMed ID: 32819498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increase of the beam intensity for BNCT by changing the core configuration at THOR.
    Liu HM; Peir JJ; Liu YH; Tsai PE; Jiang SH
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S247-50. PubMed ID: 19394237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.
    Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M
    Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An iterative prediction method for designing the moderator used for the boron neutron capture therapy.
    Zhang R; Yu Y; Zhang Z; Yang Y
    Med Phys; 2022 Jan; 49(1):598-610. PubMed ID: 34762299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study on the treatment of brain tumors with BNCT using several moderators with different thicknesses.
    Zhu Y; Lin Z; Yu H; Yu X
    Appl Radiat Isot; 2024 Jun; 208():111303. PubMed ID: 38531243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system.
    Hu N; Tanaka H; Ono K
    Med Phys; 2022 Oct; 49(10):6609-6621. PubMed ID: 35941788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility study of using laser-generated neutron beam for BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Sep; 103():173-6. PubMed ID: 26115204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.
    Rahmani F; Seifi S; Anbaran HT; Ghasemi F
    Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A
    Capoulat ME; Kreiner AJ
    Phys Med; 2017 Jan; 33():106-113. PubMed ID: 28049613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renovation of epithermal neutron beam for BNCT at THOR.
    Liu YW; Huang TT; Jiang SH; Liu HM
    Appl Radiat Isot; 2004 Nov; 61(5):1039-43. PubMed ID: 15308189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.