These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26298579)
1. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579 [TBL] [Abstract][Full Text] [Related]
2. Effects of different carbon sources on growth, membrane permeability, β-sitosterol consumption, androstadienedione and androstenedione production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2015 Feb; ():. PubMed ID: 25682382 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of beta-sitosterol transformation in Mycobacterium vaccae with increased cell wall permeability. Korycka-Machała M; Rumijowska-Galewicz A; Lisowska K; Ziolkowskit A; Sedlacze L Acta Microbiol Pol; 2001; 50(2):107-15. PubMed ID: 11720305 [TBL] [Abstract][Full Text] [Related]
4. [Microbial degradation of beta-sitosterol: production of delta 4-androstene-3,17-dione]. Wang JY; Yin ZH; Zhou WS Yao Xue Xue Bao; 1992; 27(1):22-5. PubMed ID: 1529708 [TBL] [Abstract][Full Text] [Related]
5. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. Malaviya A; Gomes J J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1235-9. PubMed ID: 18716814 [TBL] [Abstract][Full Text] [Related]
6. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Vidal M; Becerra J; Mondaca MA; Silva M Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690 [TBL] [Abstract][Full Text] [Related]
7. The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compounds. Korycka-Machała M; Rumijowska-Galewicz A; Dziadek J Pol J Microbiol; 2005; 54(1):5-11. PubMed ID: 16209089 [TBL] [Abstract][Full Text] [Related]
8. [Side chain cleavage of sterols by Mycobacterium sp. M12]. Zhang LQ; Bian EP; Wang Y Yao Xue Xue Bao; 1992; 27(12):903-7. PubMed ID: 1299139 [TBL] [Abstract][Full Text] [Related]
10. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979. Su L; Shen Y; Gao T; Luo J; Wang M Appl Biochem Biotechnol; 2017 Aug; 182(4):1564-1574. PubMed ID: 28120242 [TBL] [Abstract][Full Text] [Related]
11. Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione. Wei W; Wang FQ; Fan SY; Wei DZ Appl Environ Microbiol; 2010 Jul; 76(13):4578-82. PubMed ID: 20453136 [TBL] [Abstract][Full Text] [Related]
12. Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment. Liu C; Zhang X; Rao ZM; Shao ML; Zhang LL; Wu D; Xu ZH; Li H J Zhejiang Univ Sci B; 2015 Apr; 16(4):286-95. PubMed ID: 25845362 [TBL] [Abstract][Full Text] [Related]
13. Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Donova MV; Nikolayeva VM; Dovbnya DV; Gulevskaya SA; Suzina NE Microbiology (Reading); 2007 Jun; 153(Pt 6):1981-1992. PubMed ID: 17526855 [TBL] [Abstract][Full Text] [Related]
14. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. Shao M; Zhang X; Rao Z; Xu M; Yang T; Li H; Xu Z; Yang S J Ind Microbiol Biotechnol; 2016 May; 43(5):691-701. PubMed ID: 26886757 [TBL] [Abstract][Full Text] [Related]
15. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. Korycka-Machała M; Ziółkowski A; Rumijowska-Galewicz A; Lisowska K; Sedlaczek L Microbiology (Reading); 2001 Oct; 147(Pt 10):2769-2781. PubMed ID: 11577156 [TBL] [Abstract][Full Text] [Related]
16. Production of 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione from rice germ and wheat germ extracts by Mycobacterium sp. Saraphanchotiwitthaya A; Sripalakit P Biotechnol Lett; 2016 Sep; 38(9):1595-602. PubMed ID: 27262293 [TBL] [Abstract][Full Text] [Related]
17. Scale-Up of Phytosterols Bioconversion into Androstenedione. Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630 [TBL] [Abstract][Full Text] [Related]
18. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192 [TBL] [Abstract][Full Text] [Related]
19. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. Liu C; Shao M; Osire T; Xu Z; Rao Z J Biosci Bioeng; 2021 Mar; 131(3):264-270. PubMed ID: 33308966 [TBL] [Abstract][Full Text] [Related]
20. Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media. de Carvalho CCCR; Fernandes P Methods Mol Biol; 2017; 1645():313-320. PubMed ID: 28710638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]