These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 26299132)
1. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae) seeds. Luzia Delgado CM; Souza de Paula A; Santos M; Silveira Paulilo MT Rev Biol Trop; 2015 Mar; 63(1):285-94. PubMed ID: 26299132 [TBL] [Abstract][Full Text] [Related]
2. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae). Orozco-Segovia A; Márquez-Guzmán J; Sánchez-Coronado ME; Gamboa de Buen A; Baskin JM; Baskin CC Ann Bot; 2007 Apr; 99(4):581-92. PubMed ID: 17298989 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Gama-Arachchige NS; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2013 Jul; 112(1):69-84. PubMed ID: 23649182 [TBL] [Abstract][Full Text] [Related]
4. Role of the lens in controlling physical dormancy break and germination of Delonix regia (Fabaceae: Caesalpinioideae). Jaganathan GK; Wu GR; Han YY; Liu BL Plant Biol (Stuttg); 2017 Jan; 19(1):53-60. PubMed ID: 26998975 [TBL] [Abstract][Full Text] [Related]
5. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling. Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC; Chien CT Ann Bot; 2008 Jul; 102(1):39-48. PubMed ID: 18453546 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus adsurgens. Jaganathan GK; Li J; Biddick M; Han K; Song D; Yang Y; Han Y; Liu B Sci Rep; 2019 Jul; 9(1):9695. PubMed ID: 31273277 [TBL] [Abstract][Full Text] [Related]
7. Determination of the water gap and the germination ecology of Jaganathan GK; Yule KJ; Biddick M AoB Plants; 2018 Oct; 10(5):ply048. PubMed ID: 30254728 [TBL] [Abstract][Full Text] [Related]
8. Diversity of epicotyl dormancy among tropical montane forest species in Sri Lanka. Athugala YS; Jayasuriya KMGG; Gunarathne AMTA; Baskin CC Plant Biol (Stuttg); 2018 Sep; 20(5):916-925. PubMed ID: 29779244 [TBL] [Abstract][Full Text] [Related]
9. Paths of water entry and structures involved in the breaking of seed dormancy of Lupinus. Robles-Díaz E; Flores J; Yáñez-Espinosa L J Plant Physiol; 2016 Mar; 192():75-80. PubMed ID: 26874334 [TBL] [Abstract][Full Text] [Related]
10. Phylogeny of seed dormancy in Convolvulaceae, subfamily Convolvuloideae (Solanales). Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2009 Jan; 103(1):45-63. PubMed ID: 19074450 [TBL] [Abstract][Full Text] [Related]
11. Seed dormancy of Ochradenus baccatus (Resedaceae), a shrubby species from Arabian desert regions. Bhatt A; Pérez-García F Rev Biol Trop; 2016 Sep; 64(3):965-74. PubMed ID: 29461763 [TBL] [Abstract][Full Text] [Related]
12. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae). Copete MA; Herranz JM; Ferrandis P; Copete E Plant Biol (Stuttg); 2015 Jul; 17(4):798-807. PubMed ID: 25598169 [TBL] [Abstract][Full Text] [Related]
13. Morphology and anatomy of physical dormancy in Ipomoea lacunosa: identification of the water gap in seeds of Convolvulaceae (Solanales). Jayasuriya KM; Baskin JM; Geneve RL; Baskin CC Ann Bot; 2007 Jul; 100(1):13-22. PubMed ID: 17513869 [TBL] [Abstract][Full Text] [Related]
15. Seed dormancy and germination of the medicinal holoparasitic plant Cistanche deserticola from the cold desert of northwest China. Wang J; Baskin JM; Baskin CC; Liu G; Yang X; Huang Z Plant Physiol Biochem; 2017 Jun; 115():279-285. PubMed ID: 28412632 [TBL] [Abstract][Full Text] [Related]
17. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid. Rhie YH; Lee SY; Kim KS Plant Biol (Stuttg); 2015 Mar; 17(2):327-34. PubMed ID: 25319374 [TBL] [Abstract][Full Text] [Related]
18. Why large seeds with physical dormancy become nondormant earlier than small ones. Rodrigues-Junior AG; Mello ACMP; Baskin CC; Baskin JM; Oliveira DMT; Garcia QS PLoS One; 2018; 13(8):e0202038. PubMed ID: 30092026 [TBL] [Abstract][Full Text] [Related]
19. Seed dormancy and germination in Al-Namazi AA; Al-Ammari BS; Davy AJ; Al-Turki TA Saudi J Biol Sci; 2020 Sep; 27(9):2420-2424. PubMed ID: 32874121 [No Abstract] [Full Text] [Related]
20. Intra-population level variation in thresholds for physical dormancy-breaking temperature. Liyanage GS; Ooi MK Ann Bot; 2015 Jul; 116(1):123-31. PubMed ID: 25997432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]