These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26299980)
1. Assessing the environmental fate of S-metolachlor, its commercial product Mercantor Gold® and their photoproducts using a water-sediment test and in silico methods. Gutowski L; Baginska E; Olsson O; Leder C; Kümmerer K Chemosphere; 2015 Nov; 138():847-55. PubMed ID: 26299980 [TBL] [Abstract][Full Text] [Related]
2. A comparative assessment of the transformation products of S-metolachlor and its commercial product Mercantor Gold(®) and their fate in the aquatic environment by employing a combination of experimental and in silico methods. Gutowski L; Olsson O; Leder C; Kümmerer K Sci Total Environ; 2015 Feb; 506-507():369-79. PubMed ID: 25460972 [TBL] [Abstract][Full Text] [Related]
3. Photolytic transformation products and biological stability of the hydrological tracer Uranine. Gutowski L; Olsson O; Lange J; Kümmerer K Sci Total Environ; 2015 Nov; 533():446-53. PubMed ID: 26179782 [TBL] [Abstract][Full Text] [Related]
4. Combination of experimental and in silico methods for the assessment of the phototransformation products of the antipsychotic drug/metabolite Mesoridazine. Wilde ML; Menz J; Leder C; Kümmerer K Sci Total Environ; 2018 Mar; 618():697-711. PubMed ID: 29055596 [TBL] [Abstract][Full Text] [Related]
5. Effect of sediment on the fate of metolachlor and atrazine in surface water. Rice PJ; Anderson TA; Coats JR Environ Toxicol Chem; 2004 May; 23(5):1145-55. PubMed ID: 15180365 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test. Su T; Deng H; Benskin JP; Radke M Chemosphere; 2016 Apr; 148():518-25. PubMed ID: 26845465 [TBL] [Abstract][Full Text] [Related]
7. Aquatic photochemistry, abiotic and aerobic biodegradability of thalidomide: identification of stable transformation products by LC-UV-MS(n). Mahmoud WM; Trautwein C; Leder C; Kümmerer K Sci Total Environ; 2013 Oct; 463-464():140-50. PubMed ID: 23792256 [TBL] [Abstract][Full Text] [Related]
8. Behavior of pesticides in water-sediment systems. Katagi T Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581 [TBL] [Abstract][Full Text] [Related]
9. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MSn and their effects on environmental bacteria. Trautwein C; Kümmerer K J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 889-890():24-38. PubMed ID: 22342447 [TBL] [Abstract][Full Text] [Related]
10. Qualitative environmental risk assessment of photolytic transformation products of iodinated X-ray contrast agent diatrizoic acid. Rastogi T; Leder C; Kümmerer K Sci Total Environ; 2014 Jun; 482-483():378-88. PubMed ID: 24662206 [TBL] [Abstract][Full Text] [Related]
11. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338 [TBL] [Abstract][Full Text] [Related]
12. A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. Hensen B; Olsson O; Kümmerer K Environ Int; 2020 Apr; 137():105533. PubMed ID: 32113087 [TBL] [Abstract][Full Text] [Related]
13. Photolysis of sulfamethoxypyridazine in various aqueous media: aerobic biodegradation and identification of photoproducts by LC-UV-MS/MS. Khaleel ND; Mahmoud WM; Hadad GM; Abdel-Salam RA; Kümmerer K J Hazard Mater; 2013 Jan; 244-245():654-61. PubMed ID: 23183348 [TBL] [Abstract][Full Text] [Related]
14. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Jiang M; Wang L; Ji R Chemosphere; 2010 Sep; 80(11):1399-405. PubMed ID: 20579689 [TBL] [Abstract][Full Text] [Related]
15. Environmental fate and effect assessment of thioridazine and its transformation products formed by photodegradation. Wilde ML; Menz J; Trautwein C; Leder C; Kümmerer K Environ Pollut; 2016 Jun; 213():658-670. PubMed ID: 27020046 [TBL] [Abstract][Full Text] [Related]
16. Investigating the presence of pesticide transformation products in water by using liquid chromatography-mass spectrometry with different mass analyzers. Hernández F; Ibáñez M; Pozo OJ; Sancho JV J Mass Spectrom; 2008 Feb; 43(2):173-84. PubMed ID: 17724783 [TBL] [Abstract][Full Text] [Related]
17. Imatinib: Major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products. Secrétan PH; Karoui M; Sadou Yayé H; Levi Y; Tortolano L; Solgadi A; Yagoubi N; Do B Sci Total Environ; 2019 Mar; 655():547-556. PubMed ID: 30476834 [TBL] [Abstract][Full Text] [Related]
18. Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems. Hensen B; Lange J; Jackisch N; Zieger F; Olsson O; Kümmerer K Water Res; 2018 Nov; 144():413-423. PubMed ID: 30059904 [TBL] [Abstract][Full Text] [Related]
19. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Sidoli P; Lassabatere L; Angulo-Jaramillo R; Baran N J Contam Hydrol; 2016 Jul; 190():1-14. PubMed ID: 27131475 [TBL] [Abstract][Full Text] [Related]
20. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Katagi T Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]