These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26300061)

  • 1. Intramolecular hydrogen bonding in the polyextremophilic short-chain dehydrogenase from the archaeon Thermococcus sibiricus and its close structural homologs.
    Bezsudnova EY; Petrova TE; Popinako AV; Antonov MY; Stekhanova TN; Popov VO
    Biochimie; 2015 Nov; 118():82-9. PubMed ID: 26300061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus.
    Bezsudnova EY; Boyko KM; Polyakov KM; Dorovatovskiy PV; Stekhanova TN; Gumerov VM; Ravin NV; Skryabin KG; Kovalchuk MV; Popov VO
    Biochimie; 2012 Dec; 94(12):2628-38. PubMed ID: 22885278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium chloride-induced modulation of the activity and thermal stability of short-chain oxidoreductase from the archaeon Thermococcus sibiricus.
    Stekhanova TN; Bezsudnova EY; Mardanov AV; Gumerov VM; Artemova N; Kleymenov SY; Popov VO
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1877-89. PubMed ID: 24061874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer: thermal stability and RNA binding.
    Chen YW; Bycroft M; Wong KB
    Biochemistry; 2003 Mar; 42(10):2857-65. PubMed ID: 12627951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure and thermal stability of ribosomal protein L30e from hyperthermophilic archaeon Thermococcus celer.
    Wong KB; Lee CF; Chan SH; Leung TY; Chen YW; Bycroft M
    Protein Sci; 2003 Jul; 12(7):1483-95. PubMed ID: 12824494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression profiles and physiological roles of two types of prefoldins from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Danno A; Fukuda W; Yoshida M; Aki R; Tanaka T; Kanai T; Imanaka T; Fujiwara S
    J Mol Biol; 2008 Oct; 382(2):298-311. PubMed ID: 18662698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, purification and crystallization of a thermostable short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus.
    Lyashenko AV; Bezsudnova EY; Gumerov VM; Lashkov AA; Mardanov AV; Mikhailov AM; Polyakov KM; Popov VO; Ravin NV; Skryabin KG; Zabolotniy VK; Stekhanova TN; Kovalchuk MV
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jun; 66(Pt 6):655-7. PubMed ID: 20516592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural evidence for guanidine-protein side chain interactions: crystal structure of CutA from Pyrococcus horikoshii in 3 M guanidine hydrochloride.
    Tanaka Y; Tsumoto K; Umetsu M; Nakanishi T; Yasutake Y; Sakai N; Yao M; Tanaka I; Arakawa T; Kumagai I
    Biochem Biophys Res Commun; 2004 Oct; 323(1):185-91. PubMed ID: 15351719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput quantification of protein structural change reveals potential mechanisms of temperature adaptation in Mytilus mussels.
    Chao YC; Merritt M; Schaefferkoetter D; Evans TG
    BMC Evol Biol; 2020 Feb; 20(1):28. PubMed ID: 32054457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of a hyperthermophilic and a mesophilic protein L30e.
    Lee KJ
    J Chem Inf Model; 2012 Jan; 52(1):7-15. PubMed ID: 22168407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms Resolution.
    Tanner JJ; Hecht RM; Krause KL
    Biochemistry; 1996 Feb; 35(8):2597-609. PubMed ID: 8611563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1.
    Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH
    J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Bashir Q; Rashid N; Jamil F; Imanaka T; Akhtar M
    J Biochem; 2009 Jul; 146(1):95-102. PubMed ID: 19307254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Stability of sugar-binding proteins: D-galactose/D-glucose-binding protein from Escherichia coli and trehalose/maltose-binding protein from Thermococcus litoralis].
    Stepanenko OV; Povarova OI; Fonin AV; Stepanenko OV
    Tsitologiia; 2010; 52(11):950-4. PubMed ID: 21268855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments.
    Coquelle N; Fioravanti E; Weik M; Vellieux F; Madern D
    J Mol Biol; 2007 Nov; 374(2):547-62. PubMed ID: 17936781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1.
    Lee HS; Kim YJ; Bae SS; Jeon JH; Lim JK; Jeong BC; Kang SG; Lee JH
    Appl Environ Microbiol; 2006 Mar; 72(3):1886-90. PubMed ID: 16517635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective factors in thermostability of thermophilic proteins.
    Sadeghi M; Naderi-Manesh H; Zarrabi M; Ranjbar B
    Biophys Chem; 2006 Feb; 119(3):256-70. PubMed ID: 16253416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.