BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26300076)

  • 21. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction.
    Kim KO; Kim JK; Kim SY
    Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals.
    Li G; Jiang W; Zhang L; Chen W; Li Q
    Front Public Health; 2021; 9():642561. PubMed ID: 33777888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative biological effectiveness for epithermal neutron beam contaminated with fast neutrons in the linear accelerator-based boron neutron capture therapy system coupled to a solid-state lithium target.
    Nakamura S; Imamichi S; Shimada K; Takemori M; Kanai Y; Iijima K; Chiba T; Nakayama H; Nakaichi T; Mikasa S; Urago Y; Kashihara T; Takahashi K; Nishio T; Okamoto H; Itami J; Ishiai M; Suzuki M; Igaki H; Masutani M
    J Radiat Res; 2023 Jul; 64(4):661-667. PubMed ID: 37295954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium neutron producing target for BINP accelerator-based neutron source.
    Bayanov B; Belov V; Kindyuk V; Oparin E; Taskaev S
    Appl Radiat Isot; 2004 Nov; 61(5):817-21. PubMed ID: 15308150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.
    Hashimoto Y; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2015 Dec; 106():88-91. PubMed ID: 26272165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
    Kobayashi T; Miura K; Hayashizaki N; Aritomi M
    Appl Radiat Isot; 2014 Jun; 88():198-202. PubMed ID: 24412425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thick beryllium target as an epithermal neutron source for neutron capture therapy.
    Wang CK; Moore BR
    Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2015 Dec; 106():68-71. PubMed ID: 26235187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold.
    Zimin S; Allen BJ
    Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.