BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 26300334)

  • 1. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing elasticity and adhesion of live cells by atomic force microscopy indentation.
    Sirghi L; Ponti J; Broggi F; Rossi F
    Eur Biophys J; 2008 Jul; 37(6):935-45. PubMed ID: 18365186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell active force generation under dynamic loading - Part II: Active modelling insights.
    Reynolds NH; McGarry JP
    Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells.
    Sanyour HJ; Li N; Rickel AP; Childs JD; Kinser CN; Hong Z
    Cardiovasc Res; 2019 Jul; 115(8):1369-1380. PubMed ID: 30395154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics.
    Efremov YM; Kotova SL; Akovantseva AA; Timashev PS
    J Nanobiotechnology; 2020 Sep; 18(1):134. PubMed ID: 32943055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures.
    Kardas D; Nackenhorst U; Balzani D
    Biomech Model Mechanobiol; 2013 Jan; 12(1):167-83. PubMed ID: 22527364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nanosecond pulse electric fields on cellular elasticity.
    Dutta D; Asmar A; Stacey M
    Micron; 2015 May; 72():15-20. PubMed ID: 25732004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements.
    Sadoun A; Puech PH
    Methods Mol Biol; 2017; 1557():139-151. PubMed ID: 28078590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.
    Zhang Y; Abiraman K; Li H; Pierce DM; Tzingounis AV; Lykotrafitis G
    PLoS Comput Biol; 2017 Feb; 13(2):e1005407. PubMed ID: 28241082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of uniaxial stretch on morphology and cytoskeleton of human mesenchymal stem cells: static vs. dynamic loading.
    Goli-Malekabadi Z; Tafazzoli-Shadpour M; Rabbani M; Janmaleki M
    Biomed Tech (Berl); 2011 Oct; 56(5):259-65. PubMed ID: 21988158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.
    Gonnermann C; Huang C; Becker SF; Stamov DR; Wedlich D; Kashef J; Franz CM
    Integr Biol (Camb); 2015 Mar; 7(3):356-63. PubMed ID: 25710133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasticity mapping of pore-suspending native cell membranes.
    Lorenz B; Mey I; Steltenkamp S; Fine T; Rommel C; Müller MM; Maiwald A; Wegener J; Steinem C; Janshoff A
    Small; 2009 Apr; 5(7):832-8. PubMed ID: 19242949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cellular elastic modulus using structure based double layer model.
    Kim Y; Kim M; Shin JH; Kim J
    Med Biol Eng Comput; 2011 Apr; 49(4):453-62. PubMed ID: 21221828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Elastic and Inelastic Properties of Cells.
    Jung W; Li J; Chaudhuri O; Kim T
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32253428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins.
    Titushkin I; Cho M
    Biophys J; 2009 Jan; 96(2):717-28. PubMed ID: 19167316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.
    Chen C; Yin L; Song X; Yang H; Ren X; Gong X; Wang F; Yang L
    Biochem Biophys Res Commun; 2016 Jan; 469(1):132-137. PubMed ID: 26616052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.
    Li M; Dang D; Liu L; Xi N; Wang Y
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):523-540. PubMed ID: 28613180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.