These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 26300619)
21. Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se Lee H; Jang Y; Nam SW; Jung C; Choi PP; Gwak J; Yun JH; Kim K; Shin B ACS Appl Mater Interfaces; 2019 Oct; 11(39):35653-35660. PubMed ID: 31525944 [TBL] [Abstract][Full Text] [Related]
22. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells. Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340 [TBL] [Abstract][Full Text] [Related]
23. Above 15% Efficient Directly Sputtered CIGS Solar Cells Enabled by a Modified Back-Contact Interface. Dai W; Gao Z; Li J; Qin S; Wang R; Xu H; Wang X; Gao C; Teng X; Zhang Y; Hao X; Wang Y; Yu W ACS Appl Mater Interfaces; 2021 Oct; 13(41):49414-49422. PubMed ID: 34615348 [TBL] [Abstract][Full Text] [Related]
25. BTO-Coupled CIGS Solar Cells with High Performances. Li C; Luo H; Gu H; Li H Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079265 [TBL] [Abstract][Full Text] [Related]
26. An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency. Asaduzzaman M; Hasan M; Bahar AN Springerplus; 2016; 5():578. PubMed ID: 27247875 [TBL] [Abstract][Full Text] [Related]
27. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells. Kim D; Jang YJ; Jung HS; Kim M; Baek D; Yi J; Lee J; Choi Y J Nanosci Nanotechnol; 2016 May; 16(5):5074-7. PubMed ID: 27483874 [TBL] [Abstract][Full Text] [Related]
28. Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells. Lv X; Zheng Z; Zhao M; Wang H; Zhuang D Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049100 [TBL] [Abstract][Full Text] [Related]
29. Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) Kim DS; Park GS; Kim B; Bae S; Park SY; Oh HS; Lee U; Ko DH; Kim J; Min BK ACS Appl Mater Interfaces; 2021 Mar; 13(11):13289-13300. PubMed ID: 33689281 [TBL] [Abstract][Full Text] [Related]
30. Surface/Interface Effects by Alkali Postdeposition Treatments of (Ag,Cu)(In,Ga)Se Martin NM; Törndahl T; Wallin E; Simonov KA; Rensmo H; Platzer-Björkman C ACS Appl Energy Mater; 2022 Jan; 5(1):461-468. PubMed ID: 35098042 [TBL] [Abstract][Full Text] [Related]
31. Alkali Metal Pretreatment for Precise Na Doping and Shao X; Shi S; Liang B; Chen L; Qi T; Yuan X; Yu S; Tang W; Yang C; Li W ACS Appl Mater Interfaces; 2024 Jun; 16(23):30147-30156. PubMed ID: 38822780 [TBL] [Abstract][Full Text] [Related]
32. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment. Tsai HW; Thomas SR; Chen CW; Wang YC; Tsai HS; Yen YT; Hsu CH; Tsai WC; Wang ZM; Chueh YL ACS Appl Mater Interfaces; 2016 Mar; 8(12):7777-82. PubMed ID: 26815164 [TBL] [Abstract][Full Text] [Related]
33. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Woo HJ; Lee WJ; Koh EK; Jang SI; Kim S; Moon H; Kwon SH Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540729 [TBL] [Abstract][Full Text] [Related]
34. Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells. Kim S; Lee CS; Kim S; Chalapathy RB; Al-Ammar EA; Ahn BT Phys Chem Chem Phys; 2015 Jul; 17(29):19222-9. PubMed ID: 26134038 [TBL] [Abstract][Full Text] [Related]
35. Composition-Dependent Passivation Efficiency at the CdS/CuIn Ballabio M; Fuertes Marrón D; Barreau N; Bonn M; Cánovas E Adv Mater; 2020 Mar; 32(9):e1907763. PubMed ID: 31984586 [TBL] [Abstract][Full Text] [Related]
36. Impact of HfO₂ as a Passivation Layer in the Solar Cell Efficiency Enhancement in Passivated Emitter Rear Cell Type. Jha RK; Singh P; Goswami M; Singh BR J Nanosci Nanotechnol; 2020 Jun; 20(6):3718-3723. PubMed ID: 31748069 [TBL] [Abstract][Full Text] [Related]
37. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering. Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270 [TBL] [Abstract][Full Text] [Related]
38. High efficiency wide gap Cu(In,Ga)Se Cheng S Heliyon; 2024 Sep; 10(17):e36965. PubMed ID: 39281428 [TBL] [Abstract][Full Text] [Related]
39. Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se Raghuwanshi M; Chugh M; Sozzi G; Kanevce A; Kühne TD; Mirhosseini H; Wuerz R; Cojocaru-Mirédin O Adv Mater; 2022 Sep; 34(37):e2203954. PubMed ID: 35900293 [TBL] [Abstract][Full Text] [Related]