These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26301317)

  • 1. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.
    Limbert G; Omar R; Krynauw H; Bezuidenhout D; Franz T
    J Mech Behav Biomed Mater; 2016 Jan; 53():21-39. PubMed ID: 26301317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
    Krynauw H; Bruchmüller L; Bezuidenhout D; Zilla P; Franz T
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):359-68. PubMed ID: 21948379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development macro-porous electro-spun meshes with clinically relevant mechanical properties-a technical note.
    Fuller KP; Gaspar D; Delgado LM; Zeugolis DI
    Biomed Mater; 2019 Jan; 14(2):024103. PubMed ID: 30560808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison.
    Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y
    Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity.
    Yeganegi M; Kandel RA; Santerre JP
    Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds.
    Fuller KP; Gaspar D; Delgado LM; Pandit A; Zeugolis DI
    Nanomedicine (Lond); 2016 May; 11(9):1031-40. PubMed ID: 27092983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation.
    Natali AN; Audenino AL; Artibani W; Fontanella CG; Carniel EL; Zanetti EM
    J Biomech; 2015 Sep; 48(12):3088-96. PubMed ID: 26253759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.
    Kratz K; Habermann R; Becker T; Richau K; Lendlein A
    Int J Artif Organs; 2011 Feb; 34(2):225-30. PubMed ID: 21374579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the microstructurally dependent mechanical properties of poly(ester-urethane-urea)s.
    Warren PD; Sycks DG; McGrath DV; Vande Geest JP
    J Biomed Mater Res A; 2013 Dec; 101(12):3382-7. PubMed ID: 23554009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions.
    English A; Azeem A; Gaspar DA; Keane K; Kumar P; Keeney M; Rooney N; Pandit A; Zeugolis DI
    J Mater Sci Mater Med; 2012 Jan; 23(1):137-48. PubMed ID: 22105221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biaxial response of ovine spinal cord dura mater.
    Shetye SS; Deault MM; Puttlitz CM
    J Mech Behav Biomed Mater; 2014 Jun; 34():146-53. PubMed ID: 24583806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling.
    Chui C; Kobayashi E; Chen X; Hisada T; Sakuma I
    Med Biol Eng Comput; 2007 Jan; 45(1):99-106. PubMed ID: 17160416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy.
    Courtney T; Sacks MS; Stankus J; Guan J; Wagner WR
    Biomaterials; 2006 Jul; 27(19):3631-8. PubMed ID: 16545867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.
    Yildirimer L; Buanz A; Gaisford S; Malins EL; Remzi Becer C; Moiemen N; Reynolds GM; Seifalian AM
    Sci Rep; 2015 Oct; 5():15040. PubMed ID: 26463421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli.
    Surrao DC; Fan JC; Waldman SD; Amsden BG
    Acta Biomater; 2012 Oct; 8(10):3704-13. PubMed ID: 22705636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.
    Kim YH; Min YK; Lee BT
    J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.