These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26301317)

  • 41. Recrystallization improves the mechanical properties of sintered electrospun polycaprolactone.
    Nelson MT; Pattanaik L; Allen M; Gerbich M; Hux K; Allen M; Lannutti JJ
    J Mech Behav Biomed Mater; 2014 Feb; 30():150-8. PubMed ID: 24295966
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poisson׳s ratio of arterial wall - Inconsistency of constitutive models with experimental data.
    Skacel P; Bursa J
    J Mech Behav Biomed Mater; 2016 Feb; 54():316-27. PubMed ID: 26539804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
    Zhurov AI; Limbert G; Aeschlimann DP; Middleton J
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):223-35. PubMed ID: 17558650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells.
    Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties.
    Correlo VM; Boesel LF; Pinho E; Costa-Pinto AR; Alves da Silva ML; Bhattacharya M; Mano JF; Neves NM; Reis RL
    J Biomed Mater Res A; 2009 Nov; 91(2):489-504. PubMed ID: 18985771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds.
    Chen L; Tang CY; Tsui CP; Chen DZ
    J Mech Behav Biomed Mater; 2013 Jun; 22():41-50. PubMed ID: 23639839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Constitutive models and failure properties of fibrous tissues of carotid artery atheroma based on their uniaxial testing.
    Lisický O; Hrubanová A; Staffa R; Vlachovský R; Burša J
    J Biomech; 2021 Dec; 129():110861. PubMed ID: 34775341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour.
    Oledzka E; Sobczak M; Kolmas J; Nalecz-Jawecki G
    Int J Mol Sci; 2015 Sep; 16(9):22205-22. PubMed ID: 26389884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation.
    Wang F; Li Z; Tamama K; Sen CK; Guan J
    Biomacromolecules; 2009 Sep; 10(9):2609-18. PubMed ID: 19689108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling.
    Forestiero A; Carniel EL; Natali AN
    Comput Methods Biomech Biomed Engin; 2014; 17(4):395-404. PubMed ID: 22616815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
    Guan J; Stankus JJ; Wagner WR
    J Control Release; 2007 Jul; 120(1-2):70-8. PubMed ID: 17509717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.
    Xu H; Li H; Ke Q; Chang J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8706-18. PubMed ID: 25826222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter.
    Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG
    Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using the Taguchi method to obtain more finesse to the biodegradable fibers.
    Ellä V; Rajala A; Tukiainen M; Kellomäki M
    Methods Mol Biol; 2012; 868():143-54. PubMed ID: 22692610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.