These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 26301696)
1. High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors. Amin KR; Bid A ACS Appl Mater Interfaces; 2015 Sep; 7(35):19825-30. PubMed ID: 26301696 [TBL] [Abstract][Full Text] [Related]
2. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Zhang Z; Zou X; Xu L; Liao L; Liu W; Ho J; Xiao X; Jiang C; Li J Nanoscale; 2015 Jun; 7(22):10078-84. PubMed ID: 25978618 [TBL] [Abstract][Full Text] [Related]
4. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. Rahimi S; Tao L; Chowdhury SF; Park S; Jouvray A; Buttress S; Rupesinghe N; Teo K; Akinwande D ACS Nano; 2014 Oct; 8(10):10471-9. PubMed ID: 25198884 [TBL] [Abstract][Full Text] [Related]
5. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Mao S; Yu K; Cui S; Bo Z; Lu G; Chen J Nanoscale; 2011 Jul; 3(7):2849-53. PubMed ID: 21674112 [TBL] [Abstract][Full Text] [Related]
6. Electrophoretic and field-effect graphene for all-electrical DNA array technology. Xu G; Abbott J; Qin L; Yeung KY; Song Y; Yoon H; Kong J; Ham D Nat Commun; 2014 Sep; 5():4866. PubMed ID: 25189574 [TBL] [Abstract][Full Text] [Related]
7. Graphene field effect transistor scaling for ultra-low-noise sensors. Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728 [TBL] [Abstract][Full Text] [Related]
8. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor. Moulick S; Alam R; Pal AN ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722 [TBL] [Abstract][Full Text] [Related]
10. Charge transfer and current fluctuations in single layer graphene transistors modified by self-assembled C60 adlayers. Wang R; Wang S; Wang X; Meyer JA; Hedegård P; Laursen BW; Cheng Z; Qiu X Small; 2013 Jul; 9(14):2420-6. PubMed ID: 23788519 [TBL] [Abstract][Full Text] [Related]
11. Chemical and biological sensing applications based on graphene field-effect transistors. Ohno Y; Maehashi K; Matsumoto K Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470 [TBL] [Abstract][Full Text] [Related]
12. Low-frequency noise in bilayer MoS(2) transistor. Xie X; Sarkar D; Liu W; Kang J; Marinov O; Deen MJ; Banerjee K ACS Nano; 2014 Jun; 8(6):5633-40. PubMed ID: 24708223 [TBL] [Abstract][Full Text] [Related]
13. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Wei D; Wu B; Guo Y; Yu G; Liu Y Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220 [TBL] [Abstract][Full Text] [Related]
14. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s. Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434 [TBL] [Abstract][Full Text] [Related]
15. Room-temperature negative differential resistance in graphene field effect transistors: experiments and theory. Sharma P; Bernard LS; Bazigos A; Magrez A; Ionescu AM ACS Nano; 2015 Jan; 9(1):620-5. PubMed ID: 25551735 [TBL] [Abstract][Full Text] [Related]
16. Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices. Sharma D; Amani M; Motayed A; Shah PB; Birdwell AG; Najmaei S; Ajayan PM; Lou J; Dubey M; Li Q; Davydov AV Nanotechnology; 2014 Apr; 25(15):155702. PubMed ID: 24642948 [TBL] [Abstract][Full Text] [Related]
17. Scalable graphene field-effect sensors for specific protein detection. Saltzgaber G; Wojcik P; Sharf T; Leyden MR; Wardini JL; Heist CA; Adenuga AA; Remcho VT; Minot ED Nanotechnology; 2013 Sep; 24(35):355502. PubMed ID: 23917462 [TBL] [Abstract][Full Text] [Related]
18. Nature of the 1/ Rehman A; Delgado Notario JA; Salvador Sanchez J; Meziani YM; Cywiński G; Knap W; Balandin AA; Levinshtein M; Rumyantsev S Nanoscale; 2022 May; 14(19):7242-7249. PubMed ID: 35514294 [TBL] [Abstract][Full Text] [Related]
19. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. Park J; Lee WH; Huh S; Sim SH; Kim SB; Cho K; Hong BH; Kim KS J Phys Chem Lett; 2011 Apr; 2(8):841-5. PubMed ID: 26295616 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. Tsai LW; Tai NH ACS Appl Mater Interfaces; 2014 Jul; 6(13):10489-96. PubMed ID: 24922088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]