These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 26301841)

  • 1. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.
    Leng N; Chu LF; Barry C; Li Y; Choi J; Li X; Jiang P; Stewart RM; Thomson JA; Kendziorski C
    Nat Methods; 2015 Oct; 12(10):947-950. PubMed ID: 26301841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
    Gong H; Do D; Ramakrishnan R
    Methods Mol Biol; 2018; 1783():193-207. PubMed ID: 29767364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling for Confounding Effects in Single Cell RNA Sequencing Studies Using both Control and Target Genes.
    Chen M; Zhou X
    Sci Rep; 2017 Oct; 7(1):13587. PubMed ID: 29051597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments.
    Korthauer KD; Chu LF; Newton MA; Li Y; Thomson J; Stewart R; Kendziorski C
    Genome Biol; 2016 Oct; 17(1):222. PubMed ID: 27782827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type.
    Kim J; Stanescu DE; Won KJ
    Nucleic Acids Res; 2018 Nov; 46(21):e124. PubMed ID: 30102368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normalization and noise reduction for single cell RNA-seq experiments.
    Ding B; Zheng L; Zhu Y; Li N; Jia H; Ai R; Wildberg A; Wang W
    Bioinformatics; 2015 Jul; 31(13):2225-7. PubMed ID: 25717193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single-Cell Sequencing Guide for Immunologists.
    See P; Lum J; Chen J; Ginhoux F
    Front Immunol; 2018; 9():2425. PubMed ID: 30405621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering and visualization of single-cell RNA-seq data using path metrics.
    Manousidaki A; Little A; Xie Y
    PLoS Comput Biol; 2024 May; 20(5):e1012014. PubMed ID: 38809943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power analysis of single-cell RNA-sequencing experiments.
    Svensson V; Natarajan KN; Ly LH; Miragaia RJ; Labalette C; Macaulay IC; Cvejic A; Teichmann SA
    Nat Methods; 2017 Apr; 14(4):381-387. PubMed ID: 28263961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq.
    Hashimshony T; Senderovich N; Avital G; Klochendler A; de Leeuw Y; Anavy L; Gennert D; Li S; Livak KJ; Rozenblatt-Rosen O; Dor Y; Regev A; Yanai I
    Genome Biol; 2016 Apr; 17():77. PubMed ID: 27121950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embracing the dropouts in single-cell RNA-seq analysis.
    Qiu P
    Nat Commun; 2020 Mar; 11(1):1169. PubMed ID: 32127540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BASIC: BCR assembly from single cells.
    Canzar S; Neu KE; Tang Q; Wilson PC; Khan AA
    Bioinformatics; 2017 Feb; 33(3):425-427. PubMed ID: 28172415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development.
    Su X; Shi Y; Zou X; Lu ZN; Xie G; Yang JYH; Wu CC; Cui XF; He KY; Luo Q; Qu YL; Wang N; Wang L; Han ZG
    BMC Genomics; 2017 Dec; 18(1):946. PubMed ID: 29202695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.
    DeTomaso D; Yosef N
    BMC Bioinformatics; 2016 Aug; 17(1):315. PubMed ID: 27553427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns.
    Moulos P; Hatzis P
    Nucleic Acids Res; 2015 Feb; 43(4):e25. PubMed ID: 25452340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of cell population diversity in single-cell landscapes.
    Liu Q; Herring CA; Sheng Q; Ping J; Simmons AJ; Chen B; Banerjee A; Li W; Gu G; Coffey RJ; Shyr Y; Lau KS
    PLoS Biol; 2018 Oct; 16(10):e2006687. PubMed ID: 30346945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linnorm: improved statistical analysis for single cell RNA-seq expression data.
    Yip SH; Wang P; Kocher JA; Sham PC; Wang J
    Nucleic Acids Res; 2017 Dec; 45(22):e179. PubMed ID: 28981748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OscoNet: inferring oscillatory gene networks.
    Cutillo L; Boukouvalas A; Marinopoulou E; Papalopulu N; Rattray M
    BMC Bioinformatics; 2020 Aug; 21(Suppl 10):351. PubMed ID: 32838730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.
    Gu X
    Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.