These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 26302054)
21. Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure. Qin F; Gao Y; Xu P; Guo B; Li J; Wang H Pest Manag Sci; 2015 Apr; 71(4):553-61. PubMed ID: 24899256 [TBL] [Abstract][Full Text] [Related]
22. Characterization of α-cypermethrin exposure in Egyptian agricultural workers. Singleton ST; Lein PJ; Farahat FM; Farahat T; Bonner MR; Knaak JB; Olson JR Int J Hyg Environ Health; 2014; 217(4-5):538-45. PubMed ID: 24269189 [TBL] [Abstract][Full Text] [Related]
23. Enantioselective Degradation Mechanism of Beta-Cypermethrin in Soil From the Perspective of Functional Genes. Yang ZH; Ji GD Chirality; 2015 Dec; 27(12):929-35. PubMed ID: 26403376 [TBL] [Abstract][Full Text] [Related]
24. Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida -a possible mechanism. Saxena PN; Gupta SK; Murthy RC Ecotoxicol Environ Saf; 2014 Feb; 100():218-25. PubMed ID: 24321850 [TBL] [Abstract][Full Text] [Related]
25. Stereo and enantioselective degradation of beta-Cypermethrin and beta-Cyfluthrin in soil. Li ZY; Zhang ZC; Zhang L; Leng L Bull Environ Contam Toxicol; 2008 Apr; 80(4):335-9. PubMed ID: 18311530 [TBL] [Abstract][Full Text] [Related]
26. Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites: enantioselective transformation and degradation in soils. Li Y; Dong F; Liu X; Xu J; Li J; Kong Z; Chen X; Zheng Y Environ Sci Technol; 2012 Mar; 46(5):2675-83. PubMed ID: 22339258 [TBL] [Abstract][Full Text] [Related]
27. Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers compared with previously available kinetic data following permethrin exposure. Ratelle M; Coté J; Bouchard M J Appl Toxicol; 2015 Dec; 35(12):1586-93. PubMed ID: 25772368 [TBL] [Abstract][Full Text] [Related]
28. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil. Yang ZH; Ji GD J Hazard Mater; 2015 Dec; 299():719-24. PubMed ID: 26298261 [TBL] [Abstract][Full Text] [Related]
29. Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Cui N; Xu H; Yao S; He Y; Zhang H; Yu Y Environ Sci Pollut Res Int; 2018 Sep; 25(25):25468-25475. PubMed ID: 29951765 [TBL] [Abstract][Full Text] [Related]
30. Ecotoxicological effects of the pyrethroid insecticide tefluthrin to the earthworm Eisenia fetida: A chiral view. Wen Y; Zhou L; Li D; Lai Q; Shi H; Wang M Environ Res; 2020 Nov; 190():109991. PubMed ID: 32768725 [TBL] [Abstract][Full Text] [Related]
31. Environmental behavior of the chiral organophosphorus insecticide acephate and its chiral metabolite methamidophos: enantioselective transformation and degradation in soils. Wang X; Li Z; Zhang H; Xu J; Qi P; Xu H; Wang Q; Wang X Environ Sci Technol; 2013 Aug; 47(16):9233-40. PubMed ID: 23883440 [TBL] [Abstract][Full Text] [Related]
32. Enantioselective mixture toxicity of the azole fungicide imazalil with the insecticide α-cypermethrin in Chironomus riparius: Investigating the importance of toxicokinetics and enzyme interactions. Kuhlmann J; Kretschmann AC; Bester K; Bollmann UE; Dalhoff K; Cedergreen N Chemosphere; 2019 Jun; 225():166-173. PubMed ID: 30875499 [TBL] [Abstract][Full Text] [Related]
33. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. Qin S; Budd R; Bondarenko S; Liu W; Gan J J Agric Food Chem; 2006 Jul; 54(14):5040-5. PubMed ID: 16819914 [TBL] [Abstract][Full Text] [Related]
34. Toxicity and transformation of insecticide fenamiphos to the earthworm Eisenia fetida. Cáceres TP; Megharaj M; Naidu R Ecotoxicology; 2011 Jan; 20(1):20-8. PubMed ID: 20882337 [TBL] [Abstract][Full Text] [Related]
35. The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil. Liu H; Yi X; Bi J; Wang P; Liu D; Zhou Z J Hazard Mater; 2019 Mar; 365():97-106. PubMed ID: 30412812 [TBL] [Abstract][Full Text] [Related]
36. A method for the simultaneous quantification of eight metabolites of synthetic pyrethroids in urine of the general population using gas chromatography-tandem mass spectrometry. Schettgen T; Dewes P; Kraus T Anal Bioanal Chem; 2016 Aug; 408(20):5467-78. PubMed ID: 27240420 [TBL] [Abstract][Full Text] [Related]
37. Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida. Xu P; Wang Y; Zhang Y; Li J; Wang H Chemosphere; 2014 Oct; 112():163-9. PubMed ID: 25048902 [TBL] [Abstract][Full Text] [Related]
38. Toxicity of the pyrethroid insecticides cypermethrin and WL85871 to the earthworm, Eisenia foetida savigny. Inglesfield C Bull Environ Contam Toxicol; 1984 Nov; 33(5):568-70. PubMed ID: 6498362 [No Abstract] [Full Text] [Related]
39. Assessing cypermethrin-contaminated soil with three different earthworm test methods. Zhou S; Duan C; Wang X; Wong HG; Yu Z; Fu H J Environ Sci (China); 2008; 20(11):1381-5. PubMed ID: 19202879 [TBL] [Abstract][Full Text] [Related]
40. Earthworm biomarker responses on exposure to commercial cypermethrin. Muangphra P; Sengsai S; Gooneratne R Environ Toxicol; 2015 May; 30(5):597-606. PubMed ID: 24376091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]