These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26302212)
21. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori. Kimoto M; Tsubota T; Uchino K; Sezutsu H; Takiya S Insect Biochem Mol Biol; 2015 Jan; 56():29-35. PubMed ID: 25449130 [TBL] [Abstract][Full Text] [Related]
22. Synchrotron FTIR microspectroscopy of single natural silk fibers. Ling S; Qi Z; Knight DP; Shao Z; Chen X Biomacromolecules; 2011 Sep; 12(9):3344-9. PubMed ID: 21790142 [TBL] [Abstract][Full Text] [Related]
23. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Asakura T; Umemura K; Nakazawa Y; Hirose H; Higham J; Knight D Biomacromolecules; 2007 Jan; 8(1):175-81. PubMed ID: 17206804 [TBL] [Abstract][Full Text] [Related]
24. Comparative transcriptome analysis of Bombyx mori spinnerets and Filippi's glands suggests their role in silk fiber formation. Wang X; Li Y; Peng L; Chen H; Xia Q; Zhao P Insect Biochem Mol Biol; 2016 Jan; 68():89-99. PubMed ID: 26592349 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning. Chang H; Cheng T; Wu Y; Hu W; Long R; Liu C; Zhao P; Xia Q PLoS One; 2015; 10(9):e0139424. PubMed ID: 26418001 [TBL] [Abstract][Full Text] [Related]
27. Combination of Amorphous Silk Fiber Spinning and Postspinning Crystallization for Tough Regenerated Silk Fibers. Yazawa K; Malay AD; Ifuku N; Ishii T; Masunaga H; Hikima T; Numata K Biomacromolecules; 2018 Jun; 19(6):2227-2237. PubMed ID: 29694780 [TBL] [Abstract][Full Text] [Related]
28. Ectopic expression of BmeryCA in Bombyx mori increases silk yield and mechanical properties by altering the pH of posterior silk gland. Shi R; Lu W; Yang J; Ma S; Wang A; Sun L; Xia Q; Zhao P Int J Biol Macromol; 2024 Jun; 271(Pt 2):132695. PubMed ID: 38810858 [TBL] [Abstract][Full Text] [Related]
29. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Leem JW; Fraser MJ; Kim YL Annu Rev Biomed Eng; 2020 Jun; 22():79-102. PubMed ID: 32160010 [TBL] [Abstract][Full Text] [Related]
30. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. Chung da E; Kim HH; Kim MK; Lee KH; Park YH; Um IC Int J Biol Macromol; 2015 Aug; 79():943-51. PubMed ID: 26072984 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method. Zhang X; Khan MM; Yamamoto T; Tsukada M; Morikawa H Int J Biol Macromol; 2012 Mar; 50(2):337-47. PubMed ID: 22198656 [TBL] [Abstract][Full Text] [Related]
32. Aquatic caddisworm silk is solidified by environmental metal ions during the natural fiber-spinning process. Ashton NN; Stewart RJ FASEB J; 2019 Jan; 33(1):572-583. PubMed ID: 29985645 [TBL] [Abstract][Full Text] [Related]
34. The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Ki CS; Kim JW; Oh HJ; Lee KH; Park YH Int J Biol Macromol; 2007 Aug; 41(3):346-53. PubMed ID: 17573107 [TBL] [Abstract][Full Text] [Related]
36. Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound. Guo K; Dong Z; Zhang Y; Wang D; Tang M; Zhang X; Xia Q; Zhao P Biochim Biophys Acta Gen Subj; 2018 May; 1862(5):1148-1156. PubMed ID: 29452235 [TBL] [Abstract][Full Text] [Related]
37. Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. Khan MM; Morikawa H; Gotoh Y; Miura M; Ming Z; Sato Y; Iwasa M Int J Biol Macromol; 2008 Apr; 42(3):264-70. PubMed ID: 18221782 [TBL] [Abstract][Full Text] [Related]