These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26302230)

  • 21. Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion.
    Yakovenko S; Drew T
    J Neurosci; 2015 Oct; 35(43):14476-90. PubMed ID: 26511240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion.
    Zelenin PV; Deliagina TG; Orlovsky GN; Karayannidou A; Dasgupta NM; Sirota MG; Beloozerova IN
    J Neurosci; 2011 Mar; 31(12):4636-49. PubMed ID: 21430163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement.
    Hermer-Vazquez L; Hermer-Vazquez R; Moxon KA; Kuo KH; Viau V; Zhan Y; Chapin JK
    Behav Brain Res; 2004 Apr; 150(1-2):93-107. PubMed ID: 15033283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus.
    Beloozerova IN
    J Neurophysiol; 2022 Jan; 127(1):56-85. PubMed ID: 34731070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. When cats need to see to step accurately?
    Volgushev M; Nguyen CT; Iyer GS; Beloozerova IN
    J Physiol; 2022 Jan; 600(1):75-94. PubMed ID: 34761816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential gating of thalamocortical signals by reticular nucleus of thalamus during locomotion.
    Marlinski V; Sirota MG; Beloozerova IN
    J Neurosci; 2012 Nov; 32(45):15823-36. PubMed ID: 23136421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of motor and visual information in the parietal area 5 during locomotion.
    Beloozerova IN; Sirota MG
    J Neurophysiol; 2003 Aug; 90(2):961-71. PubMed ID: 12904498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of reinnervation of the triceps brachii on joint kinematics and electromyographic patterns of the feline forelimb during level and upslope walking.
    Livingston BP; Nichols TR
    Cells Tissues Organs; 2014; 199(5-6):405-22. PubMed ID: 25824127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A secondary motor area contributing to interlimb coordination during visually guided locomotion in the cat.
    Nakajima T; Fortier-Lebel N; Drew T
    Cereb Cortex; 2022 Dec; 33(2):290-315. PubMed ID: 35259760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential modulation of descending signals from the reticulospinal system during reaching and locomotion.
    Dyson KS; Miron JP; Drew T
    J Neurophysiol; 2014 Nov; 112(10):2505-28. PubMed ID: 25143539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limb and back muscle activity adaptations to tripedal locomotion in dogs.
    Fuchs A; Anders A; Nolte I; Schilling N
    J Exp Zool A Ecol Genet Physiol; 2015 Oct; 323(8):506-15. PubMed ID: 26200094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task specific adaptations in rat locomotion: runway versus horizontal ladder.
    Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K
    Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The mechanisms of the formation of neuronal reactions in the cat motor cortex related to the initiation of a conditioned reflex of the placing of a limb on a support: hypothesis].
    Maĭorov VI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(6):963-73. PubMed ID: 7879450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Activity of neurons of the motor-sensory cortex of the cat during natural locomotion while stepping over obstacles].
    Beloozerova IN; Sirota MG
    Neirofiziologiia; 1986; 18(4):546-9. PubMed ID: 3762798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the discharge patterns of motor cortical neurones associated with volitional changes in stepping in the cat.
    Amos A; Armstrong DM; Marple-Horvat DE
    Neurosci Lett; 1990 Feb; 109(1-2):107-12. PubMed ID: 2314625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat.
    Aoki S; Sato Y; Yanagihara D
    J Neurophysiol; 2013 Oct; 110(7):1511-24. PubMed ID: 23615542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of motor cortex neurons during backward locomotion.
    Zelenin PV; Deliagina TG; Orlovsky GN; Karayannidou A; Stout EE; Sirota MG; Beloozerova IN
    J Neurophysiol; 2011 Jun; 105(6):2698-714. PubMed ID: 21430283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.