These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26302358)
1. Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. Yang Y; Goetzfried MA; Hidaka K; You M; Tan W; Sugiyama H; Endo M Nano Lett; 2015 Oct; 15(10):6672-6. PubMed ID: 26302358 [TBL] [Abstract][Full Text] [Related]
2. Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors. Willner EM; Kamada Y; Suzuki Y; Emura T; Hidaka K; Dietz H; Sugiyama H; Endo M Angew Chem Int Ed Engl; 2017 Nov; 56(48):15324-15328. PubMed ID: 29044955 [TBL] [Abstract][Full Text] [Related]
3. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy. Endo M; Sugiyama H Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497 [TBL] [Abstract][Full Text] [Related]
4. A Photoregulated DNA-Based Rotary System and Direct Observation of Its Rotational Movement. Yang Y; Tashiro R; Suzuki Y; Emura T; Hidaka K; Sugiyama H; Endo M Chemistry; 2017 Mar; 23(16):3979-3985. PubMed ID: 28199775 [TBL] [Abstract][Full Text] [Related]
5. Single-Molecule Visualization of B-Z Transition in DNA Origami Using High-Speed AFM. Endo M; Sugiyama H Methods Mol Biol; 2023; 2651():241-250. PubMed ID: 36892772 [TBL] [Abstract][Full Text] [Related]
6. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM. Endo M; Sugiyama H Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235 [TBL] [Abstract][Full Text] [Related]
7. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy. Endo M Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467 [TBL] [Abstract][Full Text] [Related]
8. Photocontrolled DNA Origami Assembly by Using Two Photoswitches. Mishra S; Park S; Emura T; Kumi H; Sugiyama H; Endo M Chemistry; 2021 Jan; 27(2):778-784. PubMed ID: 33063405 [TBL] [Abstract][Full Text] [Related]
9. AFM-based single-molecule observation of the conformational changes of DNA structures. Endo M Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504 [TBL] [Abstract][Full Text] [Related]
10. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. Suzuki Y; Endo M; Yang Y; Sugiyama H J Am Chem Soc; 2014 Feb; 136(5):1714-7. PubMed ID: 24428846 [TBL] [Abstract][Full Text] [Related]
11. Single-Molecule AFM Study of DNA Damage by Ray A; Liosi K; Ramakrishna SN; Spencer ND; Kuzuya A; Yamakoshi Y J Phys Chem Lett; 2020 Sep; 11(18):7819-7826. PubMed ID: 32830976 [TBL] [Abstract][Full Text] [Related]
12. Force-Induced Unravelling of DNA Origami. Engel MC; Smith DM; Jobst MA; Sajfutdinow M; Liedl T; Romano F; Rovigatti L; Louis AA; Doye JPK ACS Nano; 2018 Jul; 12(7):6734-6747. PubMed ID: 29851456 [TBL] [Abstract][Full Text] [Related]
13. Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme. Endo M; Takeuchi Y; Suzuki Y; Emura T; Hidaka K; Wang F; Willner I; Sugiyama H Angew Chem Int Ed Engl; 2015 Sep; 54(36):10550-4. PubMed ID: 26195344 [TBL] [Abstract][Full Text] [Related]
14. Direct visualization of transient thermal response of a DNA origami. Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845 [TBL] [Abstract][Full Text] [Related]
15. Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures. Gnapareddy B; Ahn SJ; Dugasani SR; Kim JA; Amin R; Mitta SB; Vellampatti S; Kim B; Kulkarni A; Kim T; Yun K; LaBean TH; Park SH Colloids Surf B Biointerfaces; 2015 Nov; 135():677-681. PubMed ID: 26340356 [TBL] [Abstract][Full Text] [Related]
16. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671 [TBL] [Abstract][Full Text] [Related]
17. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames. Willaert RG; Kasas S Methods Mol Biol; 2022; 2516():157-167. PubMed ID: 35922627 [TBL] [Abstract][Full Text] [Related]
18. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands. He K; Li Z; Liu L; Zheng M; Mao C Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869 [TBL] [Abstract][Full Text] [Related]
19. Biophysical characterisation of DNA origami nanostructures reveals inaccessibility to intercalation binding sites. Miller HL; Contera S; Wollman AJM; Hirst A; Dunn KE; Schröter S; O'Connell D; Leake MC Nanotechnology; 2020 Mar; 31(23):235605. PubMed ID: 32125281 [TBL] [Abstract][Full Text] [Related]
20. Correlative Super-Resolution and Atomic Force Microscopy of DNA Nanostructures and Characterization of Addressable Site Defects. Green CM; Hughes WL; Graugnard E; Kuang W ACS Nano; 2021 Jul; 15(7):11597-11606. PubMed ID: 34137595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]