BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26302379)

  • 21. Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium.
    Reddy VN; Kasahara E; Hiraoka M; Lin LR; Ho YS
    Exp Eye Res; 2004 Dec; 79(6):859-68. PubMed ID: 15642323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.
    Lyng FM; Maguire P; McClean B; Seymour C; Mothersill C
    Radiat Res; 2006 Apr; 165(4):400-9. PubMed ID: 16579652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative stress as a significant factor for development of an adaptive response in irradiated and nonirradiated human lymphocytes after inducing the bystander effect by low-dose X-radiation.
    Ermakov AV; Konkova MS; Kostyuk SV; Egolina NA; Efremova LV; Veiko NN
    Mutat Res; 2009 Oct; 669(1-2):155-61. PubMed ID: 19540246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Extracellular DNA fragments from culture medium of low-dose irradiated human lymphocyte trigger instigating of the oxidative stress and the adaptive response in non-irradiated bystander lymphocytes].
    Ermakov AV; Kon'kova MS; Kostiuk SV; Ershova ES; Egolina NA; Veĭko NN
    Radiats Biol Radioecol; 2008; 48(5):553-64. PubMed ID: 19004328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts.
    Smilenov LB; Hall EJ; Bonner WM; Sedelnikova OA
    Radiat Prot Dosimetry; 2006; 122(1-4):256-9. PubMed ID: 17164279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of chromosomal instability in alpha-irradiated and bystander human fibroblasts.
    Ponnaiya B; Jenkins-Baker G; Bigelow A; Marino S; Geard CR
    Mutat Res; 2004 Dec; 568(1):41-8. PubMed ID: 15530538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability?
    Lyng FM; Seymour CB; Mothersill C
    Radiat Res; 2002 Apr; 157(4):365-70. PubMed ID: 11893237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying a bystander response following microbeam irradiation using single-cell RT-PCR analyses.
    Ponnaiya B; Jenkins-Baker G; Randers-Pherson G; Geard CR
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):64-8. PubMed ID: 17379089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of heavy ions and energetic protons on normal human fibroblasts.
    Yang H; Anzenberg V; Held KD
    Radiats Biol Radioecol; 2007; 47(3):302-6. PubMed ID: 17867499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bystander effect.
    Hall EJ
    Health Phys; 2003 Jul; 85(1):31-5. PubMed ID: 12852468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATR signaling controls the bystander responses of human chondrosarcoma cells by promoting RAD51-dependent DNA repair.
    Luong NC; Kawamura H; Ikeda H; Roppongi RT; Shibata A; Hu J; Jiang JG; Yu DS; Held KD
    Int J Radiat Biol; 2024; 100(5):724-735. PubMed ID: 38442236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel approaches with track segment alpha particles and cell co-cultures in studies of bystander effects.
    Geard CR; Jenkins-Baker G; Marino SA; Ponnaiya B
    Radiat Prot Dosimetry; 2002; 99(1-4):233-6. PubMed ID: 12194293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling.
    Qu P; Shao Z; Zhang Y; He J; Lu D; Wei W; Hua J; Wang W; Wang J; Ding N
    J Cell Physiol; 2024 Feb; 239(2):e31163. PubMed ID: 38009273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutive nitric oxide acting as a possible intercellular signaling molecule in the initiation of radiation-induced DNA double strand breaks in non-irradiated bystander cells.
    Han W; Wu L; Chen S; Bao L; Zhang L; Jiang E; Zhao Y; Xu A; Hei TK; Yu Z
    Oncogene; 2007 Apr; 26(16):2330-9. PubMed ID: 17016433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bystander effect in alpha-particle irradiations of human prostate tumor cells.
    Wang R; Coderre JA
    Radiat Res; 2005 Dec; 164(6):711-22. PubMed ID: 16296877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intestinal epithelial cell dysfunction is mediated by an endothelial-specific radiation-induced bystander effect.
    Gaugler MH; Neunlist M; Bonnaud S; Aubert P; Benderitter M; Paris F
    Radiat Res; 2007 Feb; 167(2):185-93. PubMed ID: 17390726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts.
    Shao C; Furusawa Y; Aoki M; Ando K
    Radiat Res; 2003 Sep; 160(3):318-23. PubMed ID: 12926990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of gap junction communication and oxidative stress in the propagation of toxic effects among high-dose α-particle-irradiated human cells.
    Autsavapromporn N; de Toledo SM; Little JB; Jay-Gerin JP; Harris AL; Azzam EI
    Radiat Res; 2011 Mar; 175(3):347-57. PubMed ID: 21388278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The radiation-induced bystander effect: evidence and significance.
    Azzam EI; Little JB
    Hum Exp Toxicol; 2004 Feb; 23(2):61-5. PubMed ID: 15070061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles.
    Nagasawa H; Little JB
    Mutat Res; 2002 Oct; 508(1-2):121-9. PubMed ID: 12379467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.