BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 26302519)

  • 41. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces.
    Davoudi A; Ghidary SS; Sadatnejad K
    J Neural Eng; 2017 Jun; 14(3):036019. PubMed ID: 28220764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ensemble Regularized Common Spatio-Spectral Pattern (ensemble RCSSP) model for motor imagery-based EEG signal classification.
    Norizadeh Cherloo M; Kashefi Amiri H; Daliri MR
    Comput Biol Med; 2021 Aug; 135():104546. PubMed ID: 34144268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiclass brain-computer interface classification by Riemannian geometry.
    Barachant A; Bonnet S; Congedo M; Jutten C
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):920-8. PubMed ID: 22010143
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiresolution analysis over simple graphs for brain computer interfaces.
    Asensio-Cubero J; Gan JQ; Palaniappan R
    J Neural Eng; 2013 Aug; 10(4):046014. PubMed ID: 23843600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New KF-PP-SVM classification method for EEG in brain-computer interfaces.
    Yang B; Han Z; Zan P; Wang Q
    Biomed Mater Eng; 2014; 24(6):3665-73. PubMed ID: 25227081
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks.
    Blanco-Diaz CF; Antelis JM; Ruiz-Olaya AF
    J Neurosci Methods; 2022 Apr; 371():109495. PubMed ID: 35150764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Actual and Imagined Walking Related Desynchronization Features in a BCI.
    Severens M; Perusquia-Hernandez M; Nienhuis B; Farquhar J; Duysens J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):877-86. PubMed ID: 26353236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
    Miao M; Hu W; Yin H; Zhang K
    Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An adaptive CSP filter to investigate user independence in a 3-class MI-BCI paradigm.
    Costa AP; Møller JS; Iversen HK; Puthusserypady S
    Comput Biol Med; 2018 Dec; 103():24-33. PubMed ID: 30336362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.
    Miao M; Zeng H; Wang A; Zhao C; Liu F
    J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing the performance of motor imagery EEG classification using phase features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamically weighted ensemble classification for non-stationary EEG processing.
    Liyanage SR; Guan C; Zhang H; Ang KK; Xu J; Lee TH
    J Neural Eng; 2013 Jun; 10(3):036007. PubMed ID: 23574821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
    Kamousi B; Amini AN; He B
    J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection.
    Yang H; Guan C; Chua KS; Chok SS; Wang CC; Soon PK; Tang CK; Ang KK
    J Neural Eng; 2014 Jun; 11(3):035016. PubMed ID: 24836742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.