These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 26302519)

  • 81. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
    Schlögl A; Lee F; Bischof H; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Classification of movement intention by spatially filtered electromagnetic inverse solutions.
    Congedo M; Lotte F; Lécuyer A
    Phys Med Biol; 2006 Apr; 51(8):1971-89. PubMed ID: 16585840
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm.
    Deng J; Yao J; Dewald JP
    J Neural Eng; 2005 Dec; 2(4):131-8. PubMed ID: 16317237
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A new parameter tuning approach for enhanced motor imagery EEG signal classification.
    Kumar S; Sharma A
    Med Biol Eng Comput; 2018 Oct; 56(10):1861-1874. PubMed ID: 29616456
    [TBL] [Abstract][Full Text] [Related]  

  • 86. CSP patches: an ensemble of optimized spatial filters. An evaluation study.
    Sannelli C; Vidaurre C; Müller KR; Blankertz B
    J Neural Eng; 2011 Apr; 8(2):025012. PubMed ID: 21436539
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
    Zhang Y; Wang Y; Jin J; Wang X
    Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
    Zhang W; Sun F; Tan C; Liu S
    Comput Intell Neurosci; 2016; 2016():2637603. PubMed ID: 28096809
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Neurophysiological predictors and spectro-spatial discriminative features for enhancing SMR-BCI.
    Robinson N; Thomas KP; Vinod AP
    J Neural Eng; 2018 Dec; 15(6):066032. PubMed ID: 30277219
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.
    Lu N; Li T; Pan J; Ren X; Feng Z; Miao H
    Comput Biol Med; 2015 May; 60():32-9. PubMed ID: 25747342
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Discriminative channel addition and reduction for filter bank common spatial pattern in motor imagery BCI.
    Chin ZY; Ang KK; Wang C; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1310-3. PubMed ID: 25570207
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A frequency-temporal-spatial method for motor-related electroencephalography pattern recognition by comprehensive feature optimization.
    Wu B; Yang F; Zhang J; Wang Y; Zheng X; Chen W
    Comput Biol Med; 2012 Apr; 42(4):353-63. PubMed ID: 22348825
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Local temporal common spatial patterns for robust single-trial EEG classification.
    Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):131-9. PubMed ID: 18403281
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces.
    Li Y; Guan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2570-3. PubMed ID: 17945723
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A space-time-frequency analysis approach for the classification motor imagery EEG recordings in a brain computer interface task.
    Ince NF; Tewfik AH; Arica S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2581-4. PubMed ID: 17946524
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Adaptive Time-Frequency Segment Optimization for Motor Imagery Classification.
    Huang J; Li G; Zhang Q; Yu Q; Li T
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475214
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG.
    Kirar JS; Agrawal RK
    J Med Syst; 2018 Mar; 42(5):78. PubMed ID: 29546648
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.