These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 26302519)
101. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123 [TBL] [Abstract][Full Text] [Related]
102. Studying the use of fuzzy inference systems for motor imagery classification. Fabien L; Anatole L; Fabrice L; Bruno A IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):322-4. PubMed ID: 17601202 [TBL] [Abstract][Full Text] [Related]
103. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns. Kim Y; Ryu J; Kim KK; Took CC; Mandic DP; Park C Comput Intell Neurosci; 2016; 2016():1489692. PubMed ID: 27795702 [TBL] [Abstract][Full Text] [Related]
104. Bispectrum-based feature extraction technique for devising a practical brain-computer interface. Shahid S; Prasad G J Neural Eng; 2011 Apr; 8(2):025014. PubMed ID: 21436530 [TBL] [Abstract][Full Text] [Related]
105. Multilayer network-based channel selection for motor imagery brain-computer interface. Yan S; Hu Y; Zhang R; Qi D; Hu Y; Yao D; Shi L; Zhang L J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295419 [No Abstract] [Full Text] [Related]
106. Seperability of four-class motor imagery data using independent components analysis. Naeem M; Brunner C; Leeb R; Graimann B; Pfurtscheller G J Neural Eng; 2006 Sep; 3(3):208-16. PubMed ID: 16921204 [TBL] [Abstract][Full Text] [Related]
107. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation. Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922 [TBL] [Abstract][Full Text] [Related]
108. Optimum spatio-spectral filtering network for brain-computer interface. Zhang H; Chin ZY; Ang KK; Guan C; Wang C IEEE Trans Neural Netw; 2011 Jan; 22(1):52-63. PubMed ID: 21216696 [TBL] [Abstract][Full Text] [Related]
109. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836 [TBL] [Abstract][Full Text] [Related]
110. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. Kamousi B; Liu Z; He B IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895 [TBL] [Abstract][Full Text] [Related]
111. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
112. SPECTRA: a tool for enhanced brain wave signal recognition. Kumar S; Tsunoda T; Sharma A BMC Bioinformatics; 2021 Jun; 22(Suppl 6):195. PubMed ID: 34078274 [TBL] [Abstract][Full Text] [Related]
113. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. Kumar S; Sharma A; Tsunoda T BMC Bioinformatics; 2017 Dec; 18(Suppl 16):545. PubMed ID: 29297303 [TBL] [Abstract][Full Text] [Related]
114. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. Lotte F; Guan C IEEE Trans Biomed Eng; 2011 Feb; 58(2):355-62. PubMed ID: 20889426 [TBL] [Abstract][Full Text] [Related]
115. Individually adapted imagery improves brain-computer interface performance in end-users with disability. Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718 [TBL] [Abstract][Full Text] [Related]
116. Spatial-temporal discriminant analysis for ERP-based brain-computer interface. Zhang Y; Zhou G; Zhao Q; Jin J; Wang X; Cichocki A IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):233-43. PubMed ID: 23476005 [TBL] [Abstract][Full Text] [Related]
117. Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices. Xie X; Yu ZL; Lu H; Gu Z; Li Y IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):504-516. PubMed ID: 27392361 [TBL] [Abstract][Full Text] [Related]
118. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. Dornhege G; Blankertz B; Curio G; Müller KR IEEE Trans Biomed Eng; 2004 Jun; 51(6):993-1002. PubMed ID: 15188870 [TBL] [Abstract][Full Text] [Related]
119. Optimizing motion imagery classification with limited channels using the common spatial pattern-based integrated algorithm. Chen S; Xi X; Wang T; Li H; Wang M; Li L; Lü Z Med Biol Eng Comput; 2024 Aug; 62(8):2305-2318. PubMed ID: 38514500 [TBL] [Abstract][Full Text] [Related]
120. Improved motor imagery classification using adaptive spatial filters based on particle swarm optimization algorithm. Xiong X; Wang Y; Song T; Huang J; Kang G Front Neurosci; 2023; 17():1303648. PubMed ID: 38192510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]