These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26302662)
1. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating. Skalyga V; Izotov I; Golubev S; Razin S; Sidorov A; Maslennikova A; Volovecky A; Kalvas T; Koivisto H; Tarvainen O Appl Radiat Isot; 2015 Dec; 106():29-33. PubMed ID: 26302662 [TBL] [Abstract][Full Text] [Related]
2. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309 [TBL] [Abstract][Full Text] [Related]
3. Design of photon converter and photoneutron target for High power electron accelerator based BNCT. Rahmani F; Seifi S; Anbaran HT; Ghasemi F Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy. Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly. Liu Z; Li G; Liu L Appl Radiat Isot; 2014 Apr; 86():1-6. PubMed ID: 24448270 [TBL] [Abstract][Full Text] [Related]
6. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
7. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT). Capoulat ME; Minsky DM; Kreiner AJ Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544 [TBL] [Abstract][Full Text] [Related]
8. First experiments with gasdynamic ion source in CW mode. Skalyga V; Izotov I; Golubev S; Vodopyanov A; Tarvainen O Rev Sci Instrum; 2016 Feb; 87(2):02A715. PubMed ID: 26931933 [TBL] [Abstract][Full Text] [Related]
10. Study of hydrogen ECR plasma in a simple mirror magnetic trap heated by 75 GHz pulsed gyrotron radiation. Skalyga VA; Izotov IV; Sidorov AV; Golubev SV; Razin SV Rev Sci Instrum; 2017 Mar; 88(3):033503. PubMed ID: 28372417 [TBL] [Abstract][Full Text] [Related]
11. A feasibility study of the Tehran research reactor as a neutron source for BNCT. Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535 [TBL] [Abstract][Full Text] [Related]
12. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom. Rasouli FS; Masoudi SF Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781 [TBL] [Abstract][Full Text] [Related]
13. Design and simulation of an optimized e-linac based neutron source for BNCT research. Durisi E; Alikaniotis K; Borla O; Bragato F; Costa M; Giannini G; Monti V; Visca L; Vivaldo G; Zanini A Appl Radiat Isot; 2015 Dec; 106():63-7. PubMed ID: 26315098 [TBL] [Abstract][Full Text] [Related]
14. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials. Kasatov D; Makarov A; Shchudlo I; Taskaev S Appl Radiat Isot; 2015 Dec; 106():38-40. PubMed ID: 26298434 [TBL] [Abstract][Full Text] [Related]
15. Measurements of the thermal neutron flux for an accelerator-based photoneutron source. Taheri A; Pazirandeh A Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907 [TBL] [Abstract][Full Text] [Related]
16. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research. Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858 [TBL] [Abstract][Full Text] [Related]
17. A powerful pulsed "point-like" neutron source based on the high-current ECR ion source. Skalyga VA; Golubev SV; Izotov IV; Shaposhnikov RA; Razin SV; Sidorov AV; Bokhanov AF; Kazakov MY; Lapin RL; Vybin SS Rev Sci Instrum; 2020 Jan; 91(1):013331. PubMed ID: 32012579 [TBL] [Abstract][Full Text] [Related]
18. Cell survival measurements in an argon, aluminium and sulphur filtered neutron beam: a comparison with 24 keV neutrons and relevance to boron neutron capture therapy. Mill AJ; Morgan GR; Newman SM Br J Radiol; 1994 Oct; 67(802):1008-16. PubMed ID: 8000825 [TBL] [Abstract][Full Text] [Related]
19. Design of compact accelerator system for high flux accelerator based neutron source. Bahng J; Lee BS; Kim ES; Park SH; Park HK Rev Sci Instrum; 2020 Feb; 91(2):023323. PubMed ID: 32113458 [TBL] [Abstract][Full Text] [Related]